giraph

a language for manipulating graphs

Jessie Liu Seth Benjamin Daniel Benett Jennifer Bi
“jessall.sh” “sethant.ml!” “danner.mll” “codejen.ml”

in2219 sjb2190 deb2174 jb3495

motivation

graph algorithms are everywhere!

Bae: Come over

Dijkstra: But there are so many routes to take and
I don't know which one’s the fastest

Bae: My parents aren't home

Dijkstra:

Dijkstra's algorithm wmoY P
Graph search algorithm
Not to be confusad with Dykstra's projection algorithm.

Dijkstra's algorithm is an algorithm for finding the shortest paths between Dijkstra's algorithm
nedes in a graph, which may represent, far example, road netwaorks. It was
conceived by computer scientist Edsger W. Dijkstra in 1956 and published
three years later. 12

The algorithm exists in many variants; Dijkstra's original variant found the
shortest path between two nodes,”?! but a more common variant fixes a
single node as the "source” node and finds shortest paths from the source
to all other nodes in the graph, producing a shortest-path tree.

project workflow: tools

© E] Hocaml
QU ..

LANGUAGE

project workflow: timeline

Oct 8, 2017 — Dec 19, 2017

Contributions to master, excluding merge commits

dec17:
sast into
codegen

Contributions: Gommits v

dec 16: dec 20:
digraphs presenting

o oct 30: endtoend today!
. hello
. world!
dec 18:
nov 17: dec2: maxflow!
oct 16: first parsed graphsin dec 19:
LRM graph codegen maps! and

generic
graphs

language overview

operators
+, -, *) /) %J >, <, >=, <=,

comments
I~ this is a
comment in giraph

~ |
O

control flow

for (1 =0; 1 <5; 1i=1+1) {}
while (i > 5) {}

if(i == true) {} else {}

non-graph types
int, bool, void,
float, string,
map<>, node

function declarations
int main() {return 0;}

map<int> foo(){map<int> m; return m;}

language overview: graphs

types syntax

graph graph<int> g = [A:1 -- B:2 -- C:3 -- A ; D:4 -- A];
digraph

wegraph digraph<float> g = [A:1.0 <-> B:2.0 ; E:5.0 <- A];
wedigraph

wegraph<string> g = [A:“hi” -{1}- B:“there”];

wedigraph<int> g = [A:1 -{1}-> B:2 <-{2}- C:3 <-{3}-> D:4];

language overview: graph operations

graph methods:

add_node(node n)

add_edge(node from, node to)
remove_node(node n)

remove edge(node from, node to)
has_node(node n)

has_edge(node from, node to)

set _edge weight(node from, node to, int weight)
get edge weight(node from, node to)
neighbors(node n)

print()

language overview: graph iteration

for_edge:
graph g = [A:1];
for_edge(e : g) {
print(e.from().data());
}

for_node:
graph g = [A:1 -- B:2];
for_node(n : g) {
print(n.data());

}

bfs:
digraph g = [A:3 -> B:4];
bfs(n : g ; B) {
print(n.data());
}

dfs:
graph g = [A:1 -- C:3; C -- E:5];
dfs(b : g ; C) {
print(b.data());
}

architecture

source tokens - AST | semantic
program Lexer J L Parser J L checking
SAST
bins .8 files [] Al files [code
Hinary] ot 0.(e
executable J L J Lgenel ation
C graph

library

Implementation: graphs

LLVM-side, a graph is represented as a void pointer. This pointer is passed into C
library functions. It is a pointer to the head of a linked list of vertex_list node’s:

struct graph { struct vertex Llist _node {
struct vertex list node *head; void *data;
}s struct adj _list node *adjacencies;

struct vertex list node *next;

Jy

Implementation: edges

Edges are represented with an adjacency list. Each vertex_list_node has an adjacency
list which contains all nodes it has an edge to. Undirected graphs are represented
internally with directed edges in both directions.

struct adj List node {
struct vertex list node *vertex;
struct adj _list node *next;
int weight;

Jy

Implementation: nodes

Nodes are also represented as void pointers LLVM-side. This is the node’s data
pointer, which points to space allocated C-side that is large enough for any of the
potential data types (i.e. sizeof(union data_type)).

union data type {
int 1i;
float f;
char *s;
void *v;

i

testing

e Aruleof thumb: At any given point, each new feature in codegen is
semantically checked.
e Used regression test suite with target pass/fail test cases, ensure that other

features still worked.

o Node and edge data: assighment and access
Graph declaration: consistency within graph type
Graph iteration
Scoping, nesting
Maps
e |f necessary, perform manual checks

o E.g., Parser exception => Run programs with ocamlrun’s parser trace

o O O O

testing

giraph — bash — 51x40

test-dfs6...
test-dfs7...
test-dfs8...
test-dfs9...
test-digraphl...
test-foredgel...
test-foredge2...
test-foredge3...
test-foredge4...
test-fornodel...
test-fornode2...
test-fornode3...
test-fornodes. ..
test-funcallgraphlit...
test-getsetweightl...
test-getsetweight2...
test-hasedgel...
test-hasedge2...
test-hasnodel. ..

test-hasnode2...

NN
~N O

PPAPRPPAWWWWWWWWWWN
SVWoONOOUTHARWNRER®WOO

PWN PR

AUl uul g

LR,
SOV NGOU A

s Moy e) Ws)]

(<2}
B WN R

giraph — vim — 84x40

./giraph.native tests/test-addnode3.gir > test-addnode3.11
/usr/local/opt/11lvm/bin/11lc test-addnode3.11l > test-addnode3.s

cc -0 test-addnode3.exe test-addnode3.s graph.o

./test-addnode3.exe

diff -b test-addnode3.out tests/test-addnode3.out > test-addnode3.diff

./giraph.native tests/test-addwedgel.gir > test-addwedgel.ll
/usr/local/opt/11lvm/bin/11lc test-addwedgel.ll > test-addwedgel.s

cc -0 test-addwedgel.exe test-addwedgel.s graph.o

./test-addwedgel.exe

diff -b test-addwedgel.out tests/test-addwedgel.out > test-addwedgel.diff

./giraph.native tests/test-andorl.gir > test-andorl.ll
/usr/local/opt/1lvm/bin/11lc test-andorl.ll > test-andorl.s

cc -o test-andorl.exe test-andorl.s graph.o

./test-andorl.exe

diff -b test-andorl.out tests/test-andorl.out > test-andorl.diff

./giraph.native tests/test-andor2.gir > test-andor2.1l
/usr/local/opt/1lvm/bin/11lc test-andor2.11 > test-andor2.s

cc -o test-andor2.exe test-andor2.s graph.o

./test-andor2.exe

diff -b test-andor2.out tests/test-andor2.out > test-andor2.diff

./giraph.native tests/test-bfsl.gir > test-bfsil.ll
/usr/local/opt/1lvm/bin/11lc test-bfsl.ll > test-bfsl.s
cc -0 test-bfsl,exe test-bfsl.s graph.o
./test-bfsl.exe

I diff -b test-bfsl.out tests/test-bfsl.out > test-bfsl.diff

edmonds-karp code example

Flow network

20

10

4

Max s-t flow

20/20

10/10

4

1010

10/30 @

0/20

demo!

thank you!

special thanks to our TA Lizzie

danner.mll

Bop-Git!

diff it
add it
commit it
push it
stash it
pull it

pop it

