
giraph
a language for manipulating graphs

Daniel Benett
“danner.mll”
deb2174

Seth Benjamin
“sethant.ml”

sjb2190

Jennifer Bi
“codejen.ml”

jb3495

Jessie Liu
“jessall.sh”

jll2219

motivation

graph algorithms are everywhere!

project workflow: tools

project workflow: timeline

dec 19:
maps! and
generic
graphs

oct 30:
hello

world!

dec 18:
max flow!

oct 16:
LRM

dec 17:
sast into
codegen

dec 16:
digraphs

end to end

dec 20:
presenting
today!

nov 17:
first parsed
graph

dec 2:
graphs in
codegen

language overview

comments
!~ this is a

comment in giraph

~!

operators
+, -, *, /, %, >, <, >=, <=, ==, :

non-graph types
int, bool, void,

float, string,

map<>, node

control flow
for (i = 0; i < 5; i = i + 1) {}

while (i > 5) {}

if(i == true) {} else {}

function declarations
int main() {return 0;}

map<int> foo(){map<int> m; return m;}

llanguage overview: graphs

types
graph

digraph

wegraph

wedigraph

syntax
graph<int> g = [A:1 -- B:2 -- C:3 -- A ; D:4 -- A];

digraph<float> g = [A:1.0 <-> B:2.0 ; E:5.0 <- A];

wegraph<string> g = [A:“hi” -{1}- B:“there”];

wedigraph<int> g = [A:1 -{1}-> B:2 <-{2}- C:3 <-{3}-> D:4];

llanguage overview: graph operations

graph methods:
add_node(node n)

add_edge(node from, node to)

remove_node(node n)

remove_edge(node from, node to)

has_node(node n)

has_edge(node from, node to)

set_edge_weight(node from, node to, int weight)

get_edge_weight(node from, node to)

neighbors(node n)

print()

for_edge:
graph g = [A:1];

for_edge(e : g) {

print(e.from().data());

}

llanguage overview: graph iteration

for_node:
graph g = [A:1 -- B:2];

for_node(n : g) {

print(n.data());

}

bfs:
digraph g = [A:3 -> B:4];

bfs(n : g ; B) {

print(n.data());

}

dfs:
graph g = [A:1 -- C:3; C -- E:5];

dfs(b : g ; C) {

print(b.data());

}

architecture

LLVM-side, a graph is represented as a void pointer. This pointer is passed into C
library functions. It is a pointer to the head of a linked list of vertex_list_node’s:

architectureimplementation: graphs

struct vertex_list_node {

void *data;

struct adj_list_node *adjacencies;

struct vertex_list_node *next;

};

struct graph {

struct vertex_list_node *head;

};

Edges are represented with an adjacency list. Each vertex_list_node has an adjacency
list which contains all nodes it has an edge to. Undirected graphs are represented
internally with directed edges in both directions.

architectureimplementation: edges

struct adj_list_node {

struct vertex_list_node *vertex;

struct adj_list_node *next;

int weight;

};

Nodes are also represented as void pointers LLVM-side. This is the node’s data
pointer, which points to space allocated C-side that is large enough for any of the
potential data types (i.e. sizeof(union data_type)).

architectureimplementation: nodes

union data_type {

int i;

float f;

char *s;

void *v;

};

testing

● A rule of thumb: At any given point, each new feature in codegen is
semantically checked.

● Used regression test suite with target pass/fail test cases, ensure that other
features still worked.
○ Node and edge data: assignment and access

○ Graph declaration: consistency within graph type

○ Graph iteration

○ Scoping, nesting

○ Maps

● If necessary, perform manual checks
○ E.g., Parser exception => Run programs with ocamlrun’s parser trace

testing

edmonds-karp code example

Flow network Max s-t flow

demo!

thank you!

special thanks to our TA Lizzie

