
Sandbox

Megan Fillion
mlf2179

Gabriel Guzman
grg2117

Dimitri Leggas
ddl2133

Abstract

We present Sandbox, a hardware description lan-
guage written for COMS W4115, Programming Lan-
guages and Translator, Fall 2017. Our goal was to
build a syntactically simple yet powerful HDL that
would be useful to students from a computer science
background learning about digital systems. Our suc-
cess in that aim should be determined by the pro-
grammer, but at minimum we bolstered our own un-
derstanding of such systems.

Contents

1

1 Introduction

1.1 Motivation

Sandbox allows students or other electrical engineering enthusiasts to test out elementary circuits
in a programming environment. Our language makes it easy and intuitive to create circuit blocks
and then link them together in the desired manner. To simulate hardware construction, we did not
include some imperative programming features such as loops in the Sandbox language. Therefore,
users will have to link their circuit blocks in a way that creates the loop they desire.

1.2 Goals

Our goal in creating Sandbox was to create a simple and easy to use hardware description language.
In some sense, we aimed for Sandbox to combine the functional elements of VDHL and the syntax
of Python. We also wanted it to be simple to define circuit block function and then connection
them in a visually intuitive and comprehensible manner in the coding environment.

2 Language Tutorial

Sandbox is clear, concise, and intuitive for both software and hardware engineers. But nonetheless,
let’s walk through the language step by step.

2.1 The sandbox Function

First of all, let’s talk about Sandbox’s main executable function–sandbox. Every .sb program has
to contain a sandbox function. It is from here that programmers can call other functions they have
created in their program. The inputs and outputs (yes, our functions handle multiple outputs) of
sandbox are the i/o of the circuit being designed by the coder. Outputs of the circuit are printed
to standard out or a file. As with all functions in our language, inputs are not required, but at least
one output is. Consider the following simple program representing a full adder written in Sandbox:

(bit a, bit b, bit cin) sandbox (bit s, bit c):

a ^ b ^ cin -> s

(a & b) ^ (cin & (a ^ b)) -> c

Here our simple sandbox function takes in 1-bit variables a, b, and cin and returns 1-bit variable
s and c. As you might have inferred, bit is a type in Sandbox, and yes, larger variables can be
declared.

Assignments in Sandbox are evaluated from left to right meaning that the expression on the left
hand side of the assign operator -> will be assigned to the variable on the right hand side. Here
for example, the value of a exclusive-or b exclusive-or c is assigned to the variable s.

One of the aspects that makes Sandbox so novel is that its functions can return more than
one value without having to merge them into an array. Any function in sandbox will return the
variables specified in the output list of the function. The sandbox function will print those outputs
out for you.

From the example above, it is clear that Sandbox’s syntax is similar to Python’s. More specific
details are covered later.

2

2.2 The type bit

Sandbox ultimately only has one type, the bit, but it is very powerful and can represent variables
of different lengths. Here’s how to declare a 1-bit variable called a:

bit a

Of course, we also allow the definition of multiple bit busses. Some k-bit busses are declared as

bit.4 b

bit.4 c

b can hold any integer between 0 and 15 inclusive, and c between 0 and 255 inclusive. Although
busses of bits are assigned using integers, individual bits can be accessed (values are labeled in
comments):

12 -> bit.4 u

u(0)->bit v / v is 0 /

u(1)->bit w / w is 0 /

u(2)->bit x / x is 1 /

u(3)->bit y / y is 1 /

We also permit accessing a sub-range of a busses (the upper bound is not inclusive)

w(0,3)->bit.3 y / y is 4 /

2.3 Variable Declaration and Scope

Sandbox supports both local and global variable declarations. Examples of local variable declaration
were seen above. Globals require the label const:

bit z const

12 -> bit.4 y const

Note that only global variables can be declared as constants. The scope of a global variable starts
when the global is declared and ends at the end of the program. It can be called in any method but
if a local variable were to be declared with the same name, the local variable would be prioritized.
Thus Sandbox is a statically scoped language. Each scope is associated with a function, or a block
of code, and is denoted by indentation within the function.

2.4 Function Calls

The scope of a function in Sandbox starts from its declaration to the end of the program. This
means that a function in Sandbox can be called anywhere in the program after its declaration. The
following simple example of a half adder show how to make calls in Sandbox:

(bit a, bit b) add (bit sum, bit carry):

a ^ b -> sum

a & b -> carry

() sandbox (bit s, bit c):

[1, 0] -> [s, c]

One should also note that outputs need not be explicitly returned.

3

2.5 Building a Circuit

Consider the following circuit:

Figure 1: A 4-bit ripple-carry adder

In the code below we have created simulated the 4-bit ripple-carry adder found in Figure 1.
The fulladder function defines the necessary logical gate operations which are then called from
sandbox:

(bit a, bit b, bit cin) fulladder (bit s, bit c):

a ^ b ^ cin -> s

(a & b) ^ (cin & (a ^ b)) -> c

(bit a.4, bit b.4, bit cin) sandbox (bit sum.4, bit cout.4):

[a(0), b(0), cin] fulladder [sum(0), cout(0)]

[a(1), b(1), cout(0)] fulladder [sum(1), cout(1)]

[a(2), b(2), cout(1)] fulladder [sum(2), cout(2)]

[a(3), b(3), cout(2)] fulladder [sum(3), cout(3)]

3 Language Reference Manual

The reference manual of sandbox, a hardware description language for writing circuits in terms of
nested circuit blocks, see below.

3.1 Lexical Elements

3.1.1 Identifiers

An identifier is a letter followed by any union of lower- and upper-case letters, numbers, and
underscores:

4

3.1.2 Keywords

The following words are reserved for language-specific use:

bit const

3.1.3 Comments

Comments in Sandbox start and end with /. Multiple line comments are accepted but nested
comments are not. The following program shows some comments:

/ this function, like this comment, does nothing /

() doNothing (bit a):

0 -> a

() sandbox (y):

/ look

how little is

done /

[] doNothing [y]

3.2 bit

The Sandbox language only has one type, but it is quite powerful to say the least. The type bit

can be used to declare variables of any size the user wants. That is, the bit type is used to define
k-bit busses. Here’s how to declare a 1-bit variable called a:

bit a

Of course, we also allow the definition of multiple bit busses. Some k-bit busses are declared as

bit.4 b

bit.4 c

b can hold any integer between 0 and 15 inclusive, and c between 0 and 255 inclusive. Although
busses of bits are assigned using integers, individual bits can be accessed (values are labeled in
comments):

12 -> bit.4 u

u(0)->bit v / v is 0 /

u(1)->bit w / w is 0 /

u(2)->bit x / x is 1 /

u(3)->bit y / y is 1 /

We also permit accessing a sub-range of a busses (the upper bound is not inclusive)

w(0,3)->bit.3 y / y is 4 /

5

3.3 Operators and Lexical Conventions

3.3.1 Operators

Sandbox supports the following operators:

+ - | & ^ << >>

< > <= >= == = !

3.3.2 Assign

Sandbox has two assignment operators. The first -> is a simple assign used for creating combina-
tional circuits. The second -: means to assign on the clock pulse.

3.3.3 Delimiters

The following table describes the delimiters used in Sandbox

, Commas are necessary for the input and out-
put parameters of a function declaration. Also
necessary when calling a function with more
than one input/output

: The colon is used to mark the start of a func-
tion body

() Parentheses are used to delimit inputs and
outputs in function declarations and to access
sub-busses

[] Braces are used to delimit input and output
parameters in a function call

3.4 Functions

3.4.1 Function Declarations

Functions act as code blocks, meaning they map a list of inputs to a list of outputs. Any function
in sandbox will take the following form:

(type in_0,...,type in_n) nameOfMethod (type out_0,...,type out_n):

stmt1

stmt2

As seen above, the variables in the parentheses preceding the method name would represent the
input argument and the ones in the succeeding parentheses would be the output arguments. The
colon is used to denote the start of the function body. Any statement inside a function has to be
indented as to show it is still in the scope of the function.

6

3.4.2 Function Returns

Sandbox, unlike many other languages, supports multiple variable return. This makes circuit
designing in Sandbox simpler because circuit blocks tend to have more than one output. Also,
Sandbox doesn?t have a return keyword–rather, all returns are implicit.

(bit a, bit b) add (bit sum, bit carry):

a ^ b -> sum

a & b -> carry

In this add function, both sum and carry are returned from the add function. As long as the
variable the user wishes to return is specified in the output parameters of a function, the value will
be returned. If a variable is defined in the output parameters, it has to assigned before the end of
the execution of the function.

3.4.3 Function Calls

To call another function declared in a sandbox function, the braces [] must be used to delimit the
input and output parameters of a function:

(bit a, bit b) sandbox (bit s, bit c):

[a, b] add [s, c]

3.4.4 The sandbox Function

The sandbox function is the main executable function of any Sandbox program. It must be located
at the end of the program as it cannot recognize functions that come after it. That is because the
scope of a function starts at its declaration and extends to the end of the program. Therefore, if
a function located under the main function and is called in sandbox, the compiler will throw an
error.

The outputs of the sandbox function will be the outputs of the program at run time and will
either be printed out on the command line or into a text file. The inputs of the sandbox function
can either be hard-coded or be taken from the command line at runtime.

If the sandbox function does not contain any outputs, the compiler will throw an error.

3.5 Variables

3.5.1 Locals

Local variables are variables defined in function declarations or inside a program. Their scope is
their declaration until the end of the function they were defined in.

3.5.2 Globals

Global variables do exist in Sandbox but they can only be declared as constants (const). The
scope of a global variable stretches from the point of their declaration until the end of the program.
But, if a local variable is declared with the same name as a global variable, the local variable will
be prioritized over the global variable:

7

/ Sandbox will output 0 and not 1 /

1 -> bit a const

() sandbox (bit out):

0 -> bit a

a -> out

4 Project Plan

4.1 Language Barrier

We were lucky, we came up with a language idea pretty quickly. During our first meeting, Dimitri
mentioned how it would be cool to write a programing language where we can build simple digital
circuits. From there, we started our work.

Although we believed we were on the right track, our language took a lot of rewriting to get it
to the precise syntax we have now. Recall the 4-bit ripple-carry adder defined at the end of Section
2.5. It initially looked very verbose:

(int(1) sum, int(1) carry) fulladder (int(1) a, int(1) b, int(1) cin):

a ^ b ^ cin -> sum

(a && b) ^ (cin && (a ^ b)) -> carry

(int(4) s, int(1) carry) 4add (int(4) a, int(4) b, int(1) cin):

FA0, FA1, FA2, FA3 = fulladder

{a(0), b(0), cin} -> {FA0.a, FA0.b, FA0.cin}

{a(1), b(1), FA0.carry} -> {FA1.a, FA1.b, FA1.cin}

{a(2), b(2), FA1.carry} -> {FA2.a, FA2.b, FA2.cin}

{a(3), b(3)], FA2.carry} -> {FA3.a, FA3.b, FA3.cin}

{FA0.sum, FA1.sum, FA2.sum, FA3.sum, FA3.carry} -> {s(0), s(1), s(2), s(3), carry}

(int(4) x, int(4) y, int(4) z) sandbox (int(4) s, int(1) carry):

ADDER1, ADDER2 = 4ADD

{x, y, 0} -> {ADDER1.a, ADDER1.b, ADDER1.cin}

{ADDER1.s, z, ADDER1.carry} -> {ADDER2.a, ADDER2.b, ADDER2.cin}

{ADDER2.s, ADDER2.carry} -> {s, carry}

4.2 Project Log

The following is a timeline of our project:

8

9/16 Project proposal
10/10 Language finalized
10/13 AST done
10/17 Scanner done
11/5 Parser done
10/17 Scanner done
11/1 Semantic checking done, flatten in progress
12/1 Code generation done
12/10 Flatten done
12/13 Tic function done
12/18 Regression testing done

4.3 Roles and Responsibilities

We divided the work as follows:

Megan, Gabe, Dimitri Deciding features, grammar, testing, final report and
slides

Gabe Code repository initialization
Megan Scanner

Dimitri and Megan Architecture design, code generation, tic.c
Dimitri Parser, semantic checking, flatten

4.4 Software Development Environment

Language Purpose
Ocam 4.06.0 Primary language used for coding Sandbox compiler

Ocamllex Ocaml lexical analysis language
Ocamlyacc Ocaml parser language
LLVM 5.0.0 Low level virtual machine, i.e translate Sandbox into

byte code
C Used to write our tic function

Bash Used for testing

4.5 Programming Style Guide

4.5.1 Indentation

As a group, we all agreed that one indent wins over four spaces any day. The rule was to indent
when necessary. But as long as the code was readable and its function was clear, a couple of missing
indents here and there was not a problem.

4.5.2 Comments

If the declaration of a function or a variable name isn?t completely self-explanatory, a short comment
explaining the code?s function should be placed above the block. No comments should be longer
than three lines on the final project. Long comments explaining a piece of code while the team is
working on it is acceptable.

9

4.5.3 in

The in keyword should be used at the end of the line if it?s a variable declaration or a short function
declaration. If a member is writing a longer function, the in should be on the next line as to make
debugging simpler.

4.5.4 Naming Conventions

Function and variable names should be descriptive yet short. Other than that, the user of underscore
and capitalized letters is fair game. One should avoid using numbers in their variable declarations
except if it pertains to the tic function or the different states in code generation.

5 Architectural Design

5.1 Overview

This is the overarching structure of the Sandbox compiler:

Figure 2: The architecture of the Sandbox compiler

10

5.1.1 Preprocessor

pre.ml takes in the code from the file passed to the compiler. Here, the preprocessor looks at
indentation patterns to mark the start and the end of a function. Also, a semi colon is added at the
end of every line to mark the end of a statement. The code that preprocessor produces is located
in pre.txt after compiling.

5.1.2 Lexical Analyzer

lexer.mll takes in the code produced by pre.ml and tokenizes the input into lexemes. Lexer excludes
comments and makes sure no variables are have the name of one of the “reserved words”. Although
not all these words are defined by sandbox, we make sure variables don?t take the name of generic
library functions as to prevent errors in later compiling phases. The lexer is compiled using ocamllex.

5.1.3 Parser

parser.mly takes in the tokens from Lexer and creates a tree. The parser defines the grammar and
structures of the Sandbox language. parser.mly is compiled with ocamlyacc.

5.1.4 Abstract Syntax Tree

ast.ml acts as an interface between the lexer and parser and the semantic checking portion of the
compiler. The ast recursively builds the tree passed from the parser and checks that the types of
the arguments are correct.

5.1.5 Semantic Checking

semant.ml is where most of the output errors will originate from. The semantic checker flips through
the tree produced by the AST and checks types, sizes, assignments, etc. Here is a list of errors the
semantic checker catches:

• Unmatched operand sizes

• Duplicate global variable

• Global initiation

• Duplicate function name

• Duplicate in/out/local bus

• Use of undeclared identifier

• Illegal bus assignment

• Incorrect dereference

• No sandbox function

• Argument mismatch

• Return value never assigned

11

5.1.6 Flattening

flat.ml collapses our a program written in Sandbox into a single function that gives a list of outputs
in terms of logical operations on inputs. Flatten performs a recursive walk through function calls to
produce post-order expressions for the outputs of the sandbox. The list of operations and literals
is passed to the code generation stage.

5.1.7 Code Generation

codegen.ml takes the sequence of literals and operations from the flatten stage and begins pushing
them onto a stack. If an operation is encountered, the correct number of literals or expressions are
popped and the necessary LLVM instruction is built, then the resulting expression is pushed back
onto the stack. Because of the flattening stage, all of the instructions are built in a single function.

In order to keep track of states of values assigned on the clock pulse, for such variables codegen.ml
creates two internal globals (in LLVM these are static variables) one for state 0 and one for state 1.
If in state 0, it loads variable from 0 and stores into 1 and if in state 1, it loads from 1 and stores
into 0. The tic function keeps track of the current state.

In order to have multiple returns, the function built in LLVM takes two pointers, one to inputs,
and one to outputs. At the beginning of the function the values are loaded from input, and at the
end the results are stored in the output array.

5.1.8 Sandbox

The sandbox.ml file calls all the functions necessary to compile the program.

5.1.9 The tic Function

tic is our only function written in C. It calls the function written in code generation, resulting in
one loop through the circut. Tic prints out the outputs of the file at each clock pulse.

6 Testing

To run our series of semantic checks and tests that pass, type:

> make

> ./testall.sh

7 Lessons Learned

7.1 Megan

Although this sounds generic, the best advice I can give is start as early as possible. Everything
is going to take longer than you think and Ocaml and LLVM cannot be learnt in one day. In
parallel, pick a project that you think your group can handle. Although it’s nice to reach for the
stars sometimes, building a compiler is going to be more complex than you think so start simple.
If need be, you can always add to your language. Also, if you’re dealing with a particularly hard
part of your compiler, be sure to sit down and map out the architecture of your design with your

12

teammates. You can’t believe how much easier it is to write your programs when you have a detailed
outline in front you. Also, you’re more likely to catch potential bugs in your program if you talk it
out with your teammates beforehand.

7.2 Gabriel

Representation of objects/datatypes in a programming language needs to be explicitly drawn out
a discussed before being tested. When I was trying to implement multiple bit busses I had an
extremely difficult time because I had not “mapped” the representation in a diagram of the AST.
In previous programming projects I had been able to get away with “figuring it out as I went,” that
was the case when I was trying to design types in our language.

I also learned how essential correctly configuring an environment is for developing projects like
this. I spent over a week trying to set up ocaml-llvm on my Windows version of Ubuntu before
resorting to the VM provided by Prof. Edwards at the start of the semester. The time I spent
setting up my environment and making it usable took up much more time then it needed to, and I
regret not speaking to a professor/ta to fix the issue sooner.

7.3 Dimitri

“Maybe I’m a masochist, but I really loved learning Ocaml. I’ll probably use this more than I
should from now on.” I said this to Megan one night probably around 3 A.M., and it was as true
now as it was then. In data structures, where I got a taste of Ocaml, I found it completely daunting
and impossible. This class put me a little out of my comfort zone and exposed me to a new way of
thinking about programming.

I learned that effective communication within a group is really hard. People do not always
understand what you mean and you do not always get what they mean. Making sure everyone is on
the same page conceptually and in terms of what needs to be done would have made things much
easier. Starting EARLY would be the key to achieving this.

13

8 Code

1

2 (*

3 assumes the the .sb file is formatted correctly

4 keeps track of indentation to form blocks

5 adds semi-colons

6 will not keep track if inside comments

7 *)

8

9 open Printf

10

11 let process ic =

12 let out_file = "pre.txt" in

13 let oc = open_out out_file in

14 let rec read_lines l =

15 try read_lines ((input_line ic)::l)

16 with End_of_file -> close_in ic; l

17 in

18

19 let process_line t l =

20 if l = "" then t

21 else if l.[String.length l - 1] = ’/’ then (fprintf oc "%s\n" l; t)

22 else if l.[0] = ’\t’ then (fprintf oc "%s;\n" l; 1)

23 else (

24 let tokens = String.split_on_char ’ ’ l

25 and opt = if t = 1 then "}\n" else "" in

26 match List.rev tokens with

27 | [] -> fprintf oc ""; t (* never matched *)

28 | hd::tl -> let last = hd and others = List.rev tl in

29 let ll = String.length last in

30 if ll > 0 then

31 (* function header *)

32 if last.[ll-1] = ’:’ then (

33 fprintf oc "%s%s %s{\n"

34 opt

35 (String.concat " " others)

36 (String.sub last 0 (ll-1)); 1)

37 (* then global decl *)

38 else (fprintf oc "%s%s;\n" opt l; 0)

39 else (fprintf oc "%s%s;\n" opt l; 0)

40)

41 in let lines = List.rev(read_lines [])

42 in ignore(List.fold_left process_line 0 lines);

43 fprintf oc "}\n";

44 close_out_noerr oc;

45 open_in out_file

14

1 (* Abstract Syntax Tree *)

2

3 type op = Add | Sub | Lt | Gt | Lte | Gte | Eq | Neq |

4 Or | And | Xor | Shl | Shr

5

6 type uop = Not | Umin

7

8 type asn = Asn | Casn

9

10 type expr =

11 | Num of int

12 | Id of string

13 | Subbus of string * int * int

14 | Unop of uop * expr

15 | Binop of expr * op * expr

16 | Basn of expr * asn * string

17 | Subasn of expr * asn * string * int * int

18

19 type stmt =

20 | Expr of expr

21 | Call of expr list * string * expr list

22

23 type bus = { name : string; size : int; init : expr; isAsn : bool array }

24

25 type gdecl = Const of bus * expr

26 (* ensure in semant that this expr is int *)

27

28 type vdecl =

29 | Bdecl of bus

30 (* | Adecl of bus * int *)

31

32 type fbody = vdecl list * stmt list

33

34 type fdecl = {

35 portin : bus list;

36 fname : string;

37 portout : bus list;

38 body : fbody;

39 }

40

41 type program = gdecl list * fdecl list

42

43 (* Pretty-printing functions *)

44

45 let string_of_op = function

46 | Add -> "+"

47 | Sub -> "-"

48 | Lt -> "<"

49 | Gt -> ">"

15

50 | Lte -> "<="

51 | Gte -> ">="

52 | Eq -> "=="

53 | Neq -> "!="

54 | Or -> "|"

55 | And -> "&"

56 | Xor -> "^"

57 | Shl -> "<<"

58 | Shr -> ">>"

59

60 let string_of_uop = function

61 | Not -> "!"

62 | Umin -> "-"

63

64 let string_of_asn = function

65 | Asn -> "->"

66 | Casn -> "-:"

67

68 let rec string_of_expr = function

69 | Num(l) -> string_of_int l

70 | Id(s) -> s

71 | Subbus(n, i1, i2) ->

72 n ^ "(" ^

73 (if i2=i1+1 then string_of_int i1

74 else string_of_int i1 ^ ":" ^ string_of_int (i2-1))

75 ^ ")"

76 | Unop(o, e) -> string_of_uop o ^ string_of_expr e

77 | Binop(e1, o, e2) ->

78 string_of_expr e1 ^ " " ^

79 string_of_op o ^ " " ^

80 string_of_expr e2

81 | Basn(e, a, n) ->

82 string_of_expr e ^ " " ^

83 string_of_asn a ^ " " ^

84 n

85 | Subasn(e, a, n, i1, i2) ->

86 string_of_expr e ^ " " ^

87 string_of_asn a ^ " " ^

88 string_of_expr (Subbus(n, i1, i2))

89

90 let rec string_of_stmt = function

91 | Expr(expr) -> string_of_expr expr ^ "\n"

92 | Call(il, f, ol) ->

93 "[" ^

94 String.concat ", " (List.map string_of_expr il) ^ "] " ^

95 f ^ " [" ^

96 String.concat ", " (List.map string_of_expr ol) ^ "]"

97

98 let string_of_bus bus =

99 string_of_expr bus.init ^ " -> " ^

16

100 "bit" ^ (if bus.size = 1 then "" else "." ^ string_of_int bus.size) ^

101 " " ^ bus.name

102

103 let string_of_vdecl v = match v with

104 | Bdecl bus -> string_of_bus bus

105

106 let string_of_gdecl v = match v with

107 | Const(bus, s) -> string_of_bus bus ^ " const"

108

109 let string_of_fdecl fdecl =

110 String.concat ", " (List.map (fun b -> b.name) fdecl.portin) ^ " " ^

111 fdecl.fname ^

112 String.concat ", " (List.map (fun b -> b.name) fdecl.portout) ^ ":\n\t" ^

113 String.concat "\n\t" (List.map string_of_vdecl (fst fdecl.body)) ^ "\n\t" ^

114 String.concat "\t" (List.map string_of_stmt (snd fdecl.body))

115

116 let string_of_program (vars, funcs) =

117 String.concat "\n" (List.map string_of_gdecl (List.rev vars)) ^ "\n" ^

118 String.concat "\n" (List.map string_of_fdecl funcs)

17

1 (* Lexical analyzer *)

2

3 { open Parser }

4

5 rule token = parse

6 |[’ ’ ’\t’ ’\r’ ’\n’] {token lexbuf} (* eat whitespace *)

7

8 (* binary operators *)

9 | ’+’ { PLUS }

10 | ’-’ { MINUS }

11 | ’|’ { OR }

12 | ’&’ { AND }

13 | ’^’ { XOR }

14 | "<<" { SHL }

15 | ">>" { SHR }

16 | ’<’ { LT }

17 | ’>’ { GT }

18 | "<=" { LTE }

19 | ">=" { GTE }

20 | "==" { EQ }

21 | "!=" { NEQ }

22

23 (* unary operator (also handle minus) *)

24 | ’!’ { NOT }

25

26 (* other operators *)

27 | "::" { CAT }

28 | ’.’ { DOT }

29

30 (* assignments *)

31 | "->" { ASSIGN }

32 | "-:" { CLKASN }

33

34 (* delimiters *)

35 | ’,’ { COMMA }

36 | ’;’ { SEMI }

37 | ’:’ { COLON }

38

39 (* scoping *)

40 | ’(’ { OPAREN }

41 | ’)’ { CPAREN }

42 | ’[’ { OBRACK }

43 | ’]’ { CBRACK }

44 | ’{’ { OBRACE }

45 | ’}’ { CBRACE }

46

47 (* key words *)

48 | "const" { CONST }

49 | "bit" { BIT }

18

50

51 (* integer and string literals *)

52 | [’0’-’9’]+ as n { NUM(int_of_string n) }

53 | [’a’-’z’ ’A’-’Z’][’a’-’z’ ’A’-’Z’ ’0’-’9’ ’_’]* as i { ID(i) }

54

55 (* Comments, unrecognized, and EOF *)

56 |"/" {comment lexbuf}

57 | _ { raise (Failure("illegal character")) }

58 | eof { EOF }

59

60 and comment = parse

61 | "/" {token lexbuf}

62 | eof { raise (Failure("comment started but never finished")) }

63 | _ {comment lexbuf}

19

1 /* parser for sandbox */

2

3 %{ open Ast %}

4

5 /* tokens */

6 %token PLUS MINUS OR AND XOR SHL SHR

7 %token LT GT LTE GTE EQ NEQ

8 %token NOT

9 %token ASSIGN CLKASN WIRE

10 %token COMMA SEMI COLON CAT DOT

11 %token CONST BIT

12 %token OPAREN CPAREN OBRACK CBRACK OBRACE CBRACE

13 %token <int> NUM

14 %token <string> ID

15 %token EOF

16

17 /* precedence */

18 %left COMMA SEMI

19 %right ASSIGN CLKASN

20 %left EQ NEQ

21 %left LT GT LTE GTE

22 %left PLUS MINUS

23 %left OR

24 %left XOR

25 %left AND

26 %left SHL SHR

27 %right NOT UMIN

28

29 %start program

30 %type <Ast.program> program

31

32 %%

33

34 program: decls EOF { $1 }

35

36 decls:

37 | /* nothing */ { [], [] }

38 | decls gdecl { ($2 :: fst $1), snd $1 }

39 | decls fdecl { fst $1, ($2 :: snd $1) }

40

41 gdecl:

42 | bdecl CONST SEMI { Const($1, $1.init) }

43

44 bdecl:

45 | init_opt BIT size_opt ID

46 { {

47 name = $4;

48 size = $3;

49 init = $1;

20

50 isAsn = Array.make $3 false

51 } }

52

53 init_opt:

54 | /* nothing */ { Num 0 }

55 | expr assign { $1 }

56

57 size_opt:

58 | /* nothing */ { 1 }

59 | DOT NUM { $2 }

60

61

62 fdecl:

63 OPAREN port CPAREN ID OPAREN port_out CPAREN

64 OBRACE fbody CBRACE

65 { {

66 portin = $2;

67 fname = $4;

68 portout = $6;

69 body = List.rev (fst $9), List.rev (snd $9);

70 } }

71

72 port:

73 | /* nothing */ { [] }

74 | busses { List.rev $1 }

75

76 port_out:

77 | /* nothing */ { raise (Failure("Empty output port list")) }

78 | busses { List.rev $1 }

79

80 busses:

81 | bdecl { [$1] }

82 | busses COMMA bdecl { $3 :: $1 }

83

84 fbody:

85 | /* nothing */ { [], [] }

86 | fbody local { ($2 :: fst $1), snd $1 }

87 | fbody stmt { fst $1, ($2 :: snd $1) }

88

89 local:

90 | vdecl SEMI { $1 }

91

92 vdecl:

93 | bdecl { Bdecl($1) }

94

95 stmt:

96 | asnexpr SEMI { Expr $1 }

97 | OBRACK actuals CBRACK ID OBRACK actuals CBRACK SEMI

98 { Call($2, $4, $6) }

99

21

100 asnexpr:

101 | expr assign ID { Basn($1, $2, $3) }

102 | expr assign ID OPAREN NUM COLON NUM CPAREN

103 { Subasn($1, $2, $3, $5, $7) }

104 | expr assign ID OPAREN NUM CPAREN

105 { Subasn($1, $2, $3, $5, $5+1) }

106

107 assign:

108 | ASSIGN { Asn }

109 | CLKASN { Casn }

110

111 actuals:

112 | /* nothing */ { [] }

113 | actual_list { List.rev $1}

114

115 actual_list:

116 | expr { [$1] }

117 | actual_list COMMA expr { $3 :: $1 }

118

119 expr:

120 | NUM { Num($1) }

121 | ID { Id($1) }

122 | ID OPAREN NUM COLON NUM CPAREN { Subbus($1, $3, $5) }

123 | ID OPAREN NUM CPAREN { Subbus($1, $3, $3+1) }

124 /* ADD CAT */

125 | MINUS expr %prec UMIN { Unop(Umin, $2) }

126 | NOT expr %prec NOT { Unop(Not, $2) }

127 | expr PLUS expr { Binop($1, Add, $3) }

128 | expr MINUS expr { Binop($1, Sub, $3) }

129 | expr EQ expr { Binop($1, Eq, $3) }

130 | expr NEQ expr { Binop($1, Neq, $3) }

131 | expr LT expr { Binop($1, Lt, $3) }

132 | expr LTE expr { Binop($1, Lte, $3) }

133 | expr GT expr { Binop($1, Gt, $3) }

134 | expr GTE expr { Binop($1, Gte, $3) }

135 | expr AND expr { Binop($1, And, $3) }

136 | expr OR expr { Binop($1, Or, $3) }

137 | expr XOR expr { Binop($1, Xor, $3) }

138 | expr SHL expr { Binop($1, Shl, $3) }

139 | expr SHR expr { Binop($1, Shr, $3) }

140 | OPAREN expr CPAREN { $2 }

22

1 (* Semantic Checking *)

2

3 open Ast

4

5 module StringMap = Map.Make(String)

6

7 (*** HELPER FUNCTIONS ***)

8

9 (* raise failure if duplicates exist *)

10 let report_duplicate exceptf list =

11 let rec helper = function

12 | n1 :: n2 :: _ when n1 = n2 -> raise (Failure (exceptf n1))

13 | _ :: t -> helper t

14 | [] -> ()

15 in helper (List.sort compare list)

16

17 (* give underlying bus of declarations *)

18 let gdec2b d = match d with Const(b, s) -> b

19 let vdec2b d = match d with Bdecl b -> b

20

21 (* number of bits required to describe int x *)

22 let bit_required x =

23 (* for the moment assuming x > 0 tho *)

24 let x = abs x

25 in let log2 y =

26 int_of_float (((log (float_of_int y)) /. (log 2.)))

27 in (log2 x) + 1

28

29 (* raise failure if some element not equal to another *)

30 let all_eq l =

31 let rec diff d = function

32 | [] | [_] -> d

33 | hd::tl -> diff ((hd - List.nth tl 0)::d) tl

34 in let diffs = diff [] l

35 in if not (List.for_all (fun x -> x = 0) diffs) then

36 raise (Failure("invalid arguments")) else ()

37

38 (* number of bits required for result of binop *)

39 let binop_size s1 op s2 = match op with

40 | And | Or | Xor -> if s1 != s2

41 then raise(Failure("operand sizes do not match "))

42 else s1

43 | Add | Sub -> Pervasives.max s1 s2

44 | Shl | Shr -> s1

45 | Lt | Gt | Lte | Gte | Eq | Neq -> 1

46

47 (*** CHECK THAT THE AST IS SEMANTICALLY CORRECT ***)

48

49 (* function for checking a single assign *)

23

50 (* use x and y to be usable for subbus *)

51 let check_basn e es b x y = (match e with

52 | Num _ -> if es > y-x then raise(Failure("size mismatch in " ^ b.name))

53 else ()

54 | Id _ | Subbus(_,_,_) | Unop(_,_) | Binop(_,_,_) -> if es != y-x

55 then raise(Failure("size mismatch in " ^ b.name)) else ()

56 | _ -> raise (Failure("illegal bus assignment: " ^ b.name)));

57 for i = x to y-1 do if b.isAsn.(i)

58 then raise (Failure("bus " ^ b.name ^ " has more than one driver"))

59 else b.isAsn.(i) <- true

60 done

61

62 (* check if valid subbus *)

63 let check_subbus b x y =

64 if x >= 0 && y <= b.size && x < y then ()

65 else raise(Failure("incorrect dereference of " ^ b.name))

66

67 let check_subasn e es b x y =

68 check_subbus b x y;

69 check_basn e es b x y

70

71 (* main checking function *)

72 let check (globaldecls, functions) =

73 (* checking globals *)

74 let globals = List.map gdec2b globaldecls in

75 (* no duplicate globals *)

76 report_duplicate (fun n -> "duplicate global variable " ^ n)

77 (List.map (fun g -> g.name) globals);

78 (* globals intialized to an int *)

79 let check_global_init g = match g.init with

80 | Num _ -> ()

81 | _ -> raise (Failure ("global " ^ g.name ^ " must be initialized to an integer"))

82 in List.iter check_global_init globals;

83

84 (* checking functions *)

85 (* no duplicate functions *)

86 report_duplicate (fun n -> "duplicate function " ^ n)

87 (List.map (fun fd -> fd.fname) functions);

88

89 (* collect declared functions *)

90 let function_decls = List.fold_left

91 (fun m fd -> StringMap.add fd.fname fd m) StringMap.empty functions

92 in

93 let function_decl s = try StringMap.find s function_decls

94 with Not_found -> raise (Failure ("no function " ^ s))

95 in

96 (* ensure that sandbox defined *)

97 let _ = function_decl "sandbox"

98 in

99 (* check each function decl *)

24

100 let check_function func =

101 (* ensure no conflict between portin/portout/locals *)

102 let locals = func.portin @ func.portout @ (List.map vdec2b (fst func.body))

103 in report_duplicate

104 (fun n -> "duplicate in/out/local bus " ^ n ^ " in " ^ func.fname)

105 (List.map (fun b -> b.name) locals);

106 (* build symbol table for all busses visible in function *)

107 let symbols = List.fold_left (fun m b -> StringMap.add b.name b m)

108 StringMap.empty (globals @ locals)

109 in

110 let lookup s =

111 try StringMap.find s symbols

112 with Not_found -> raise (Failure ("undeclared indentifier " ^ s))

113 in

114

115 (* need to ensure all outputs are assigned *)

116 let out_names = List.map (fun b -> b.name) func.portout in

117 let out_table = Hashtbl.create (2 * List.length out_names) in

118 List.iter (fun out -> Hashtbl.add out_table out false) out_names;

119

120 let check_const n =

121 if List.mem n (List.map (fun b->b.name) globals) &&

122 not (List.mem n (List.map (fun b->b.name) globals))

123 then raise(Failure("cannot change const")) else ()

124 in

125 (* returns number of bits required for expression *)

126 let rec expr = function

127 | Num x -> bit_required x

128 | Id s -> (lookup s).size

129 | Subbus(n, i1, i2) -> let b = lookup n in

130 check_subbus b i1 i2; i2-i1

131 | Unop(op, e) -> expr e

132 | Binop(e1, op, e2) -> let s1 = expr e1 and s2 = expr e2 in

133 binop_size s1 op s2

134 | Basn(e, a, n) -> let s = expr e and b = lookup n in

135 check_const n;

136 check_basn e s b 0 b.size;

137 if List.mem n out_names then Hashtbl.replace out_table n true;

138 b.size

139 | Subasn(e, a, n, i1, i2) -> let s = expr e and b = lookup n in

140 check_const n;

141 check_subasn e s b i1 i2;

142 if List.mem n out_names then Hashtbl.replace out_table n true;

143 i2-i1

144 in

145 (* returns unit if semantically valid *)

146 let rec stmt = function

147 | Expr e -> ignore(expr e)

148 | Call(inputs, n, outputs) -> let fd = function_decl n in

149 (* can only assign to busses and subbuses *)

25

150 List.iter (fun out -> match out with

151 | Id _ | Subbus(_,_,_) -> ()

152 | _ -> raise(Failure("only bus or subbus can be an output"))

153) outputs;

154 (* calls to sandbox are not permitted *)

155 if fd.fname = "sandbox" then raise(Failure("cannot call sandbox"))

156 (* do number of actuals/outputs match portin/portout *)

157 else if (List.length inputs) != (List.length fd.portin)

158 then raise(Failure("input mismatch in " ^ n))

159 else if (List.length fd.portout) != (List.length outputs)

160 then raise(Failure("output mismatch in " ^ n))

161 (* can inputs fit in portin and outputs in portout *)

162 (* accounts for shorthand function calls... *)

163 else

164 let check_ports acts port =

165 List.iter2 (fun x y -> if not (x mod y = 0) then

166 raise (Failure("invalid arguments")) else ())

167 acts port;

168 let quo = List.map2 (fun x y -> x / y) acts port

169 in all_eq quo

170 in

171 check_ports

172 (List.map expr inputs) (List.map (fun b -> b.size) fd.portin);

173 check_ports

174 (List.map expr outputs) (List.map (fun b -> b.size) fd.portout);

175

176 (* sizes accounted for, but can outputs be assigned? *)

177 let check_outasn o = match o with

178 | Id s -> let out = lookup s in

179 check_basn (Id "dummy") out.size out 0 out.size;

180 if List.mem out.name out_names

181 then Hashtbl.replace out_table out.name true

182 | Subbus(n, i1, i2) -> let out = lookup n in

183 check_subasn (Id "dummy") (i2-i1) out i1 i2;

184 if List.mem out.name out_names

185 then Hashtbl.replace out_table out.name true

186 | _ -> raise (Failure(n ^ " cannot port to these outputs "))

187 in List.iter check_outasn outputs

188

189 (* check each statement and that all outputs are assigned *)

190 in List.iter stmt (snd func.body);

191 Hashtbl.iter (fun n x -> if x then ()

192 else raise(Failure("not all outputs of " ^ func.fname ^ " assigned")))

193 out_table

194 in

195 List.iter check_function functions

196

197 (* BREAK UP BUSSES INTO BITS *)

198 (* THE CODE BELOW HERE CAUSES NO ERRORS BUT IS NOT

199 COMPLETE. THE INTENT WAS TO RETURN A MODIFIED AST

26

200 WHERE EVERYTHNG HAS BEEN BROKEN INTO BITS

201 *)

202

203 (* convert decimal number to list of bits of given len *)

204 let d2b x len =

205 let rec dec2bin y lst = match y with

206 | 0 -> (List.rev lst)

207 @ (Array.to_list (Array.make (len - List.length lst) 0))

208 | _ -> dec2bin (y / 2) ((y mod 2)::lst)

209 in dec2bin x []

210

211 (* convert name into list of bit names *)

212 let n2b n i1 i2 =

213 let rec name2bits n i lst =

214 if i = i1 then (n ^ "_" ^ (string_of_int i1))::lst

215 else name2bits n (i-1) ((n ^ "_" ^ (string_of_int i))::lst)

216 in name2bits n (i2-1) []

217

218 (* break unops up into bitwise unops *)

219 let break_unop uop ex = match uop with

220 | Not -> []

221 | Umin -> []

222

223 (* break binops up into bitwise binops *)

224 let break_binop e1 op e2 = []

225

226 (* function for breaking a single assign *)

227 (* use x and y to be usable for subbus *)

228 let break_basn e a b x y = (match e with

229 | Num v -> List.map2 (fun q p -> Basn(Num q, a, p))

230 (d2b v y) (n2b b.name x y)

231 | Id s -> List.map2 (fun q p -> Basn(Id q, a, p))

232 (n2b s 0 y) (n2b b.name x y)

233 | Subbus(n,i1,i2) -> List.map2 (fun q p -> Basn(Id q, a, p))

234 (n2b n i1 i2) (n2b b.name x y)

235 | Unop(uo,e1) -> []

236 | Binop(e1,o,e2) -> []

237 | _ -> raise (Failure("never reached")))

238

239 let break_busses gb =

240 let binit = match gb.init with Num x -> x | _ -> 0 in

241 let vals = d2b binit gb.size in

242 let nams = n2b gb.name 0 gb.size in

243 List.map2 (fun n v ->

244 {

245 name = n;

246 size = 1;

247 init = Num v;

248 isAsn = [| false |]

249 }

27

250) nams vals

251

252 let break (globaldecls, functions) =

253 (* break up globals *)

254 let globals = List.map gdec2b globaldecls in

255 let broken_globals = List.concat (List.map break_busses globals) in

256

257 (* collect functions *)

258 (* let function_decls = List.fold_left

259 (fun m fd -> StringMap.add fd.fname fd m) StringMap.empty functions

260 in

261 let function_decl s = StringMap.find s function_decls

262 in *)

263 (* check each function decl *)

264 let break_function func =

265 (* ensure no conflict between portin/portout/locals *)

266 let locals = func.portin @ func.portout @ (List.map vdec2b (fst func.body)) in

267 (* let broken_locals = List.concat (List.map break_busses locals) in *)

268

269 (* build symbol table for all busses visible in function *)

270 let symbols = List.fold_left (fun m b -> StringMap.add b.name b m)

271 StringMap.empty (globals @ locals)

272 in let lookup s = StringMap.find s symbols

273 in

274 (* list of stmts on bits *)

275 let rec break_stmt = function

276 | Expr e -> (match e with

277 | Basn(ex,a,nb) -> let b = lookup nb in

278 break_basn ex a b 0 b.size

279 | Subasn(ex,a,nb,i1,i2) -> let b = lookup nb in

280 break_basn ex a b i1 i2

281 | _ -> []

282)

283 | Call(inputs, n, outputs) -> [] (* let fd = function_decl n in [] *)

284

285 (* check each statement and that all outputs are assigned *)

286 in List.map break_stmt (snd func.body)

287

288 in

289 broken_globals, List.map break_function functions

28

1

2 (* Flattening stage *)

3

4 open Ast

5

6 type node =

7 | Val of int

8 | Var of string

9 | Uo of uop

10 | Op of op

11 | As of asn

12

13 module StringMap = Map.Make(String)

14

15 let flatten (globaldecls, functions) =

16 (* globals busses *)

17 let g2b d = match d with Const(b, s) -> b in

18 let globals = List.map g2b globaldecls in

19 (* let global_names = List.map (fun b -> b.name) globals in *)

20 let globes =

21 List.map

22 (fun g -> match g.init with

23 | Num x -> g.name, x

24 | _ -> raise(Failure("never reached")))

25 globals

26 in

27 (* table keeping track of variable names *)

28 let var_table = Hashtbl.create 100 in

29

30 (* function declarations *)

31 let function_decls = List.fold_left

32 (fun m fd -> StringMap.add fd.fname fd m) StringMap.empty functions

33 in

34 let func_lookup n = StringMap.find n function_decls in

35 let sbd = func_lookup "sandbox"

36 in

37 let rec f2g f inexpr outexpr =

38 (* local busses *)

39 let d2b d = match d with Bdecl b -> b in

40 let ldec = List.map d2b (fst f.body) in

41 let locals = f.portin @ f.portout @ ldec in

42 (* for keeping track of naming *)

43 let track_name b = let n = b.name in

44 if Hashtbl.mem var_table n

45 then Hashtbl.replace var_table n (Hashtbl.find var_table n + 1)

46 else Hashtbl.add var_table n 0

47 in List.iter track_name locals;

48 let get_local n =

49 n ^ "_" ^ string_of_int (Hashtbl.find var_table n) in

29

50 (* all available busses *)

51 let loces =

52 List.concat

53 (List.map

54 (fun l -> match l.init with

55 | Num x -> [Val x; Var(get_local l.name); As(Asn)]

56 | _ -> raise(Failure("never reached")))

57 ldec)

58 in

59 (* symbols only contains locals, globals in globals *)

60 let symbols = List.fold_left (fun m b -> StringMap.add b.name b m)

61 StringMap.empty locals

62 in

63 (* mapping formals to actuals *)

64 let f2a =

65 let formals = List.map (fun b -> b.name) f.portin in

66 List.fold_left2 (fun m f a -> StringMap.add f a m)

67 StringMap.empty formals inexpr

68 in

69 (* mapping formals to outputs *)

70 let f2o =

71 let formals = List.map (fun b -> b.name) f.portout in

72 List.fold_left2 (fun m f o -> StringMap.add f o m)

73 StringMap.empty formals outexpr

74 in

75 let rec expr2g = function

76 | Num i -> [Val i]

77 | Id s -> (* is it a local? *)

78 if StringMap.mem s symbols then

79 (if StringMap.mem s f2a

80 then [Var(StringMap.find s f2a)] (* is it a portin? *)

81 else [Var(get_local s)]) (* or just a normal local? *)

82 else [Var s] (* or a global *)

83 | Unop(o, e) -> (expr2g e) @ [Uo o]

84 | Subbus(n,e1,e2) -> []

85 | Binop(e1, o, e2) -> (expr2g e1) @ (expr2g e2) @ [Op o]

86 | Basn(e, a, n) -> let store =

87 (if StringMap.mem n f2o

88 then [Var(StringMap.find n f2o)] (* is it a portout? *)

89 else [Var(get_local n)]) (* or just a normal local? *)

90 in (expr2g e) @ store @ [As a]

91 | Subasn(e, a, n, i1, i2) -> []

92 in

93 let rec stmt2g g = function

94 | Expr e -> g @ (expr2g e)

95 | Call(ins, fn, outs) ->

96 (* let x = List.concat (List.map expr2g ins)

97 and y = List.concat (List.map expr2g outs) *)

98 let x = List.map

99 (fun a -> match a with Id s -> get_local s | _ -> raise(Failure("not handled

30

yet")))

100 ins

101 and y = List.map

102 (fun a -> match a with Id s -> get_local s | _ -> raise(Failure("not handled

yet")))

103 outs

104 in g @ (f2g (func_lookup fn) x y)

105 in

106 loces @ (List.fold_left stmt2g [] (snd f.body))

107

108 (* flatten sandbox, and thus the program *)

109 in let pi = List.map (fun b -> b.name ^ "_0") sbd.portin

110 in let po = List.map (fun b -> b.name ^ "_0") sbd.portout

111

112 (* in let circ_in = List.map (fun n -> Var(n)) pi

113 in let circ_out = List.map (fun n -> Var(n)) po *)

114 in

115 (globes,

116 f2g sbd pi po,

117 pi,

118 po)

119

120 (* Pretty-printing functions *)

121

122 let string_of_node = function

123 | Val(i) -> string_of_int i

124 | Var(s) -> s

125 | Uo(u) -> string_of_uop u

126 | Op(o) -> string_of_op o

127 | As(a) -> string_of_asn a

128

129 let rec string_of_netlist = function

130 | [] -> "\n"

131 | n::tl -> string_of_node n ^ " " ^ string_of_netlist tl

31

1

2 (* Code Generation *)

3

4 module L = Llvm

5 module A = Ast

6 module F = Flat

7

8 module StringMap = Map.Make(String)

9

10 let translate (gl, nl, pi, po) =

11 (* setup context / module *)

12 let context = L.global_context () in

13 let the_module = L.create_module context "Sandbox"

14 and i32_t = L.i32_type context

15 and void_t = L.void_type context

16 in

17 let intyps =

18 Array.of_list([L.pointer_type i32_t; L.pointer_type i32_t; i32_t]) in

19 let mtyp = L.function_type void_t intyps in

20 let main = L.define_function "sandbox" mtyp the_module in

21 let builder = L.builder_at_end context (L.entry_block main) in

22

23 (* declare globals *)

24 List.iter

25 (fun (n, i) ->

26 ignore(L.define_global n (L.const_int i32_t i) the_module))

27 gl;

28

29 (* outputs of flipflops *)

30 let clock_asn =

31 let rec get_clock_asn fl = function

32 | [] | [_] -> fl

33 | hd::tl -> if (List.nth tl 0) = F.As(Casn)

34 then get_clock_asn (hd::fl) tl else get_clock_asn fl tl

35 in get_clock_asn [] nl

36 in

37 (* declare things that depend on state as static *)

38 let clock_vars =

39 let add_clock_variable m n =

40 let static0 = L.define_global (n ^ "__0") (L.const_int i32_t 0) the_module

41 and static1 = L.define_global (n ^ "__1") (L.const_int i32_t 0) the_module

42 in

43 L.set_linkage L.Linkage.Internal static0;

44 L.set_linkage L.Linkage.Internal static1;

45 StringMap.add n (static0, static1) m

46 in

47 List.fold_left

48 (fun m n -> match n with

49 | F.Var s -> add_clock_variable m s

32

50 | _ -> m (* never matched *)

51) StringMap.empty clock_asn

52 in

53 let clock_lookup n state = let v = StringMap.find n clock_vars

54 in if state = 0 then fst v else snd v

55 in

56

57 (* declare formals *)

58 let vars =

59 let add_formal m n p = L.set_value_name n p;

60 let local =

61 L.build_alloca

62 (if n = "sopt" then i32_t else L.pointer_type i32_t)

63 n builder

64 in

65 ignore (L.build_store p local builder);

66 StringMap.add n local m

67 in

68 (* define variables not on clock *)

69 let add_variable m n =

70 let var = L.build_alloca i32_t n builder

71 in StringMap.add n var m

72 in

73 (* add arguments *)

74 let portin = ["input"; "output"; "sopt"] in

75 let formals = List.fold_left2 add_formal StringMap.empty portin

76 (Array.to_list (L.params main))

77 in

78 List.fold_left

79 (fun m n -> match n with

80 | F.Var s -> if not (StringMap.mem s m || StringMap.mem s clock_vars)

81 then add_variable m s else m

82 | _ -> m

83) formals nl (* extract variable names from nl *)

84 in

85 (* Return the value for a variable or formal argument *)

86 let lookup n = StringMap.find n vars

87 in

88 (* get the state option *)

89 let sopt = lookup "sopt" in

90 (* load inputs *)

91 for i = 0 to ((List.length pi) - 1)

92 do

93 let arr = L.build_load (lookup "input") "input" builder in

94 let index = L.const_int i32_t i in

95 let ptr = L.build_in_bounds_gep arr [| index |] "" builder in

96 let inp = L.build_load ptr ("in"^(string_of_int i)) builder in

97 ignore(L.build_store inp (lookup (List.nth pi i)) builder)

98 done;

99 (* compute llvalue of flattened netlist and store outputs *)

33

100 let rec netlist s = function

101 | [] ->

102 (* store outputs *)

103 for i = 0 to ((List.length po) - 1)

104 do

105 let v = List.nth po i in

106 let state = if sopt = L.const_int i32_t 0 then 0 else 1 in

107 let vv = if StringMap.mem v clock_vars

108 then clock_lookup v state

109 else lookup v

110 in

111 let out = L.build_load vv v builder in

112 let arr = L.build_load (lookup "output") "output" builder in

113 let index = L.const_int i32_t i in

114 let ptr = L.build_in_bounds_gep arr [| index |] "" builder in

115 ignore(L.build_store out ptr builder)

116 done;

117 (* need to construct the return statement *)

118 ignore(L.build_ret_void builder); builder

119 (* lookup_global name m *)

120 | n::tl -> Stack.push (match n with

121 | F.Val i -> L.const_int i32_t i

122 | F.Var v ->

123 if StringMap.mem v clock_vars then (

124 let state = (if sopt = L.const_int i32_t 0 then "__0" else "__1") in

125 let name = v ^ state in

126 let vv = match L.lookup_global name the_module with

127 | Some llv -> llv

128 | _ -> raise(Failure("never reached"))

129 in

130 (* if (List.mem v po) then (print_endline "1"; vv)else (print_endline "2";

L.build_load vv name builder) *)

131 if List.nth tl 0 = As(Casn) then vv else L.build_load vv name builder

132

133) else(

134 (* if List.mem v po then lookup v *)

135 if List.nth tl 0 = As(Asn) then lookup v

136 else L.build_load (lookup v) v builder

137)

138 | F.Uo uo -> let n1 = Stack.pop s in

139 (match uo with

140 | A.Umin -> L.build_neg

141 | A.Not -> L.build_not

142) n1 "" builder

143 | F.Op op -> let n2 = Stack.pop s and n1 = Stack.pop s in

144 (match op with

145 | A.Add -> L.build_add n1 n2 "" builder

146 | A.Sub -> L.build_sub n1 n2 "" builder

147 | A.Lt -> L.build_icmp L.Icmp.Slt n1 n2 "" builder

148 | A.Gt -> L.build_icmp L.Icmp.Sgt n1 n2 "" builder

34

149 | A.Lte -> L.build_icmp L.Icmp.Sle n1 n2 "" builder

150 | A.Gte -> L.build_icmp L.Icmp.Sge n1 n2 "" builder

151 | A.Eq -> L.build_icmp L.Icmp.Eq n1 n2 "" builder

152 | A.Neq -> L.build_icmp L.Icmp.Ne n1 n2 "" builder

153 | A.Or -> L.build_or n1 n2 "" builder

154 | A.And -> L.build_and n1 n2 "" builder

155 | A.Xor -> L.build_xor n1 n2 "" builder

156 | A.Shl -> L.build_shl n1 n2 "" builder

157 | A.Shr -> L.build_lshr n1 n2 "" builder

158)

159 | F.As a -> let n2 = Stack.pop s and n1 = Stack.pop s in

160 L.build_store n1 n2 builder

161) s;

162 netlist s tl

163 in

164

165 let (empty_stack : L.llvalue Stack.t) = Stack.create ()

166 in

167 ignore(netlist empty_stack nl);

168 the_module

35

1

2 (* Used for compiling *)

3

4 type action = Ast | Flatten | LLVM_IR | Compile

5

6 let _ =

7 let action = ref Compile in

8 let set_action a () = action := a in

9 let speclist = [

10 ("-a", Arg.Unit (set_action Ast), "Print the SAST");

11 ("-f", Arg.Unit (set_action Flatten), "Print the flattened net list");

12 ("-l", Arg.Unit (set_action LLVM_IR), "Print the generated LLVM IR");

13 ("-c", Arg.Unit (set_action Compile), "Compile program");

14] in

15 let usage_msg = "usage: ./sandbox [-a|-f|-l|-c] [file.sb]" in

16 let channel = ref stdin in

17 Arg.parse speclist (fun filename -> channel := open_in filename) usage_msg;

18 let pc = Pre.process !channel in

19 let lexbuf = Lexing.from_channel pc in

20 let ast = Parser.program Lexer.token lexbuf in

21 Semant.check ast;

22 match !action with

23 | Ast -> print_string (Ast.string_of_program ast)

24 | Flatten -> let (_,nl,_,_) = Flat.flatten ast in

25 print_string (Flat.string_of_netlist nl)

26 | LLVM_IR ->

27 print_string (Llvm.string_of_llmodule (Codegen.translate (Flat.flatten ast)))

28 | Compile -> let m = Codegen.translate (Flat.flatten ast) in

29 Llvm_analysis.assert_valid_module m;

30 print_string (Llvm.string_of_llmodule m)

36

1

2 // Tic Function

3

4 #include <stdio.h>

5 #include <stdlib.h>

6 #include <string.h>

7

8 extern void sandbox(int *ins, int *outs);

9

10 int main(int argc, char **argv)

11 {

12 // argv[1]...argv[argc - 3] are inputs

13 // argv[argc - 2] is number of outputs expected

14 // argv[argc - 1] is how times to loop

15 int inc = argc - 3;

16 int outc = atoi(argv[argc - 2]);

17 int loop = atoi(argv[argc - 1]);

18 int *ins = malloc(inc * sizeof(int));

19 int *outs = malloc(outc * sizeof(int));

20

21 int i;

22 for (i = 1; i <= argc - 3; i++)

23 ins[i] = atoi(argv[i]);

24

25

26 for (i = 0; i < loop; i++){

27 sandbox(ins, outs);

28 for(int j = 0; j < outc; j++)

29 printf("%d ", *(outs+j));

30 printf("\n");

31 }

32 return 0;

33 }

37

