
SOL
Shape Oriented Language

Aditya Narayanamoorthy - Language Guru

Gergana Alteva - Project Manager

Erik Dyer - System Architect

Kunal Baweja - Testing

Why SOL?
We wanted:

- a simple, lightweight object-oriented language for creating

2D animations

- the ability to define and create shapes (similar to a class)

- shapes to move as specified by the programmer

- to take away learning a complicated third-party animation

tool, such as OpenGL

Advantages to SOL
- Easy to learn

- similar to Java, C++

- Great alternative to C graphics libraries

- Skip learning a complex language library

- Object-oriented

- Easy memory management

- Programmer does not have to worry about memory management

- No memory leaks

- Abstracts cumbersome features in libraries

- No renderers, screens, or external media needed to create and animate shapes

Architecture

Stationary Triangle in SDL 1/2

Stationary Triangle in SDL 2/2

Moving Triangle in
SOL

shape Line {
int[2] a;
int[2] b;
int[2] c;

construct (int[2] a_init, int[2] b_init){

a = a_init;
b = b_init;
c[0] = (a[0] + b[0]) / 2;
c[1] = (a[1] + b[1]) / 2;

 }

draw() {
drawCurve(a, c, b, 2, [0, 0, 0]);

 }
}

Building a Shape
→ coordinates represented by

int[2]

→ colors by int[3]

→ constructor used to set

coordinates

→ define how coordinates will be

connected with:

- drawPoint(int[2], int[3])

- drawCurve(int[2], int[2],

int[2], int, int[3])

- print(int[2], string, int[3])

→ drawCurve is a bezier curve

that accepts 3 control points

Rendering the Shape

func main(){
int[2] dis;
Line l;
dis = [200, 0];
l = shape Line([1,3], [5,8]);

l.render = {
translate(dis, 2);

}
}

→ coordinates represented by int[2]

→ declare an instance of the Shape

and pass in corresponding values

→ define a render block for the shape

with any of the following:

- translate(int[2], int)

- rotate(int[2], float, int)

DEMO

