
Genesis
Created by: Jason Zhao, Leo Stilwell, Michael Wang,

Saahil Jain, Sam Cohen

A language for implementing interactive 2D-games.

Language Features

Language Features
● Genesis is designed to be intuitive and expressive for game developers,

without all the frills.
● Genesis abstracts away the game engine, allowing developers to simply

define the objects and their associated interactions. No need to touch C or a
graphics library!

● Genesis provides a simple way to do everything from defining colors and
clusters to initializing screens.

● Genesis runs on top of an update function that handles game behavior,
enabling the creation of dynamic, engaging games.

● Genesis provides a robust array built with game design in mind.

Making a Game

Internal Game Loop

Game Operation

startGame(width,height,color) init() update(int f) quit()

void init()
Called immediately after the game window has been created, before any frames
have been rendered.

void update(int frameNumber)
Called every time a frame is rendered, and takes in an integer value that
represents the total number of frames that have been rendered so far.

Colors
A primitive type that consists of three integers that represent r, g, and b values.
The following lines of code represent the color white.

Clusters
Objects that represent rectangular clusters of pixels. They must be initialized with
initial width, height, x, y, dx, dy, and color values:

Cluster Properties
Properties of colors can be set and accessed using the ‘.’ operator, like so:

Property name Property Type Description

width int Width, in pixels

height int Height, in pixels

x int X position, in pixels

y int Y position, in pixels

dx int X velocity, in pixels per frame

dy int Y velocity, in pixels per frame

color color The color of the cluster

draw bool Whether the cluster should be displayed

Key Input
Users can monitor whether a key has been:

● Pressed for the first time - keyDown()
● Held down - keyHeld()
● Released - keyUp()

Each function takes in the name of the key and whether the given state is currently
true.

Collision Detection
● Simple Syntax

● Easy to check even in an array

● returns a boolean value - true if the clusters collide, false if they don’t

Arrays
Genesis provides an array type that is crucial to implementing various game
features.

● Array declaration syntax:

● Array initialization using the new keyword:

● Array Access:

● Array Assign:

robust

-function passing

-

Arrays
● We noticed that many other projects implemented arrays whose type was

bound to their size. Instead we implemented a size-agnostic array that uses
pointers-- allowing arrays to be passed back and forth between functions with
ease.

● Arrays can hold all data types, but are not recursive.

Miscellaneous Functions
int random(int max)
Returns a random integer in the range [0, max)

setFPS(int fps)
Sets the rate at which frames are rendered and the update() function is called. The
default fps is set at 60.

Test Suite & Building
● Cross-platform development cycle

● Split tests into regression and new tests

● LetThereBe.sh

Demo

