
C R P T A L
Sammy Tbeile | Jaewan Bahk | Michail Oikonomou

Carolina Almirola | Rahul Kapur

Overview

Motivation

• Combined interest in the fields of
security and cryptography.

• No well-documented or
straightforward languages/packages
that help alleviate the pains of modular
arithmetic and complicated encryption
schemes for users.

• Given the growing demand for more
secure systems, a language designed
for ease of implementation of
encryption schemes is a valuable
addition to the field of computer
science and security engineering.

About Our Language

• C-like syntax

• Compiles to LLVM

• Built-in types for modular integers and large numbers:

• Gems: The gem type consists of a value and a
modular value. All operations performed on a gem are
done as modular arithmetic.

• Lattices: Built-in representation for large numbers.

• Integers: The same integers we know and love from C.

• Mixed operations between gem, int, and lattice make
arithmetic straightforward and remove burden from users
of keeping track of numerical limits.

Special Features

• Modular Arithmetic:

• Arithmetic operations on gems maintain modular state

• Addition, Subtraction, Power, Multiplication, Division

• Modular Inverse:

• Intuitive syntax for obtaining the modular inverse of a number

• example: 
 
gem	a	=	(3,	5) 
gem	b	=	!a 
print_gem(b) 
 
>>	2	

• Built-in MD5 Hashing

• Print:

• print_gem	and print_lat allow for direct printing to stdout of gem
and lattice values.

How a BN becomes a Gem

• We use openssl’s BIGNUM
library to implement arithmetic
between gems and lattices.

• Modular arithmetic operations
are defined in crypto_arith.c

• codegen.ml uses these
functions

Implement some
well known

schemes using
our new
language

The Game Plan

Testing

First drafts of
parser, scanner,
ast, semant, &

codegen

Encryption
SchemesHello World!

Proposal
+

LRM

Implementation
of expressions
and statements

+
Operations on
built-in types

TestingTesting

Expressions
+

Built-in
Types

Division of Labour

Roles/Responsibilities

• Sammy (System Architect):

• Integration of openSSL and BN in Codegen.

• Implementation of expressions and built-in functions.

• Jaewan (Language Guru/Tester):

• Semantic checking and language documentation and specification.

• Testing

• Made the logo!

• Michail (System Architect/Tester):

• Implementation of expressions and statements and built-in functions

• Testing for continuous integration.

• Carolina (Manager):

• Semantic checking for mathematical expressions and statements.

• Language documentation and Final Report.

• Rahul Kapur (Tester):

• Test suite and continuous integration.

And now for some demos…

chinese_remainder_thm.crp

diffie-hellman.crp

euclidean_algorithm.crp

hash-md5.crp

