
pixelman
Pixel Manipulation Language

Anthony Chan tc2665
Teresa Choe tc2716

Gabriel Lucas Kramer-Garcia glk2110
Brian Tsau bt2420

1. Introduction/Rationale
pixelman is a programming language that can be used to manipulate

pixels to edit image files. When brainstorming for our programming
language, we thought about specific problems our language could be
used to solve. In the case of image processing, we thought about how
to manipulate pixels through functions; for example, by applying a
convolution matrix to pixels, we could sharpen or blur an image. By
allowing users to include their own tools to perform these operations,
we allow them to create powerful image processing programs.

2. Project Description
pixelman will provide tools to load/write images to/from a

filesystem, I/O operations with stdin and stdout, and image
manipulation functions. Compiled code will be translated into LLVM.
Our most powerful feature will be the pixel transformation tool, which
will take in a function that takes in a pixel and outputs a pixel, and
can be used to perform a variety of image manipulations.

3. Language Features
A. Data Types

Primitive data type Description

int 32-bit signed integer

float 32-bit floating point

string List of characters enclosed in
double quotes

1

boolean true/false

null null

B. Conditionals

Conditional Syntax Description

if, else, else if if(expr) {} else if {}
else {}

Executes block of code
if condition is met.

for for(int i = 0;i <
8;i=i+1) {}

Loops until condition
(i < 8) is met.

while while(expr) {} Loops while expression
evaluates to true.

C. Operations

Operator Syntax Description Return Type

= a = b Assigns variable
to expression of
same type (or
ints to floats)

Type of a

+ a + b Addition, if an
argument is a
float will
return float

int, float

- a - b Subtraction, if
an argument is a
float will
return float

int, float

* a * b Multiplication,
if an argument
is a float will
return float

int, float

/ a / b If both
arguments are

int, float

2

integers, will
perform integer
division; else
floating point
division

% a % b Modulus
Operator.
Returns
remainder of
a/b. a and b
must both be
ints.

int

== a == b Checks to see if
variables are
equal to each
other

boolean

!= a != b Checks to see if
variables are
not equal to
each other

boolean

>= a >= b Checks to see if
argument on the
left side is
greater than or
equal to
argument on
right

boolean

<= a <= b Checks to see if
argument on the
left side is
greater than or
equal to
argument on
right

boolean

! !a Boolean NOT boolean

&& a && b Boolean AND boolean

|| a || b Boolean OR boolean

3

<< a << b Left bit shift,
b must be an
integer

type of a

>> a >> b Right bit shift,
b must be an
integer

type of a

D. Syntax

pixelman will have a similar syntax and aesthetic to Java, and
functions will be treated the same way as variables (as in Python).
pixelman is strongly typed, and in function declarations, argument and
return types must match up at compilation time.

1. Complete statements
Semicolons will be used to declare the end of a
statement

2. Comments

There will only be single line comments, “//”
3. Blocks of code

Blocks of code will begin with a “{“ and end with a
“}”

4. Function declaration
Functions will be declared “def type
functionName(arguments) {code}”. A main function is
necessary for execution of code.

5. Whitespace

All whitespace and newlines will be processed out and
used to separate tokens

6. Reserved Keywords
return, def, main, all data types

7. Code Example

def int greyscale(string file_name) {
if(image im = load(filename) == null) {

perror(“original image did not load”);
}

printf(“original image:”);
display(im);

4

for(int i = 0; i < size(im); i++) {
for(int j = 0; j < size (im[i]); j++) {

int[] rgb = im[i][j].RGB;

// Calculates grayscale by calculating
the average

int grey = (rgb[0] + rgb[1] +
rgb[2])/3;

im[i][j].RGB = int[3]{grey, grey,
grey};

}

}

printf(“grayscale image:”);
display(im);

}

def int main(args, argv) {
string file_name = ‘admin/image.jpg’;
greyscale(file_name);

}

 E. Data Structures

Data Structure Syntax Description

List int[3] arr = {1, 2,
3};
arr[0] = 0;

Mutable data structure
holding multiple
blocks of information
of the same type

Pixel pixel pix = pixel(r,
g, b)

Data structure with
list of three integer
values (RGB) capped in
the range of 0-255,
and two integers (x,
y) coordinates

5

Image image im =
load(file_path)
im.

Contains a image
height × image width
list of pixels

F. Built in Library

Function Arguments Description Return Type

printf string format,
...

Prints to
stdout, using a
similar model to
C

On success: #
characters
written
On failure: -1

scanf string buffer Scan from stdin On success: #
characters
scanned
On failure: -1

size list arr Gets length of
list

On success: int
On failure: -1

load string file_path Loads image from
file

On success:
image
On failure: null

write string
file_path, image
image

Will write image
to file

On success: 0
On failure: -1

display image im Shows image
without saving

On success: 0
On failure: -1

resize image im, int w,
int h

Resize image to
new size w × h

On success:
image
On failure: null

transform image im,
function process

Performs an
operation
defined by the
user in function
on each pixel in
image, and
creates a new
image

On success:
image
On failure: null

6

7

