pixelman

Pixel Manipulation Language

Anthony Chan tc2665
Teresa Choe tc2716

Gabriel Lucas Kramer-Garcia glk2110
Brian Tsau bt2420

1. Introduction/Rationale
pixelman is a programming language that can be used to manipulate
pixels to edit image files. When brainstorming for our programming
language, we thought about specific problems our language could be
used to solve. In the case of image processing, we thought about how
to manipulate pixels through functions; for example, by applying a
convolution matrix to pixels, we could sharpen or blur an image. By

allowing users to include their own tools to perform these operations,
we allow them to create powerful image processing programs.

2. Project Description
pixelman will provide tools to load/write images to/from a
filesystem, I/O operations with stdin and stdout, and image
manipulation functions. Compiled code will be translated into LLVM.
Our most powerful feature will be the pixel transformation tool, which
will take in a function that takes in a pixel and outputs a pixel, and
can be used to perform a variety of image manipulations.

3. Language Features
A. Data Types

Primitive data type Description

int 32-bit signed integer

float 32-bit floating point

string List of characters enclosed in
double quotes

boolean true/false
null null
B. Conditionals
Conditional Syntax Description
if, else, else if if(expr) {} else if {} | Executes block of code
else {} if condition is met.
for for(int 1 = 0;1i < Loops until condition
8;i=i+1) {} (i < 8) is met.
while while(expr) {} Loops while expression
evaluates to true.
C. Operations
Operator Syntax Description Return Type
= a==>b Assigns variable | Type of a
to expression of
same type (or
ints to floats)
+ a+b Addition, if an |int, float
argument is a
float will
return float
- a-»b Subtraction, if |int, float
an argument is a
float will
return float
* a*b Multiplication, int, float
if an argument
is a float will
return float
/ a/b If both int, float
arguments are

integers, will
perform integer
division; else
floating point
division

a»b

Modulus
Operator.
Returns
remainder of
a/b. a and b
must both be
ints.

int

Checks to see if
variables are
equal to each
other

boolean

Checks to see if
variables are
not equal to
each other

boolean

Checks to see if
argument on the
left side is
greater than or
equal to
argument on
right

boolean

Checks to see if
argument on the
left side is
greater than or
equal to
argument on
right

boolean

Boolean NOT

boolean

&&

Boolean AND

boolean

Boolean OR

boolean

<<

a<<b Left bit shift, |[type of a
b must be an
integer

>>

a>b Right bit shift, | type of a
b must be an
integer

D. Syntax
pixelman will have a similar syntax and aesthetic to Java, and

functions will be treated the same way as variables (as in Python).
pixelman is strongly typed, and in function declarations, argument and
return types must match up at compilation time.

. Complete statements

Semicolons will be used to declare the end of a
statement

. Comments

There will only be single line comments, “//”

. Blocks of code

Blocks of code will begin with a “{“ and end with a
y

Function declaration

Functions will be declared “def type
functionName(arguments) {code}”. A main function is
necessary for execution of code.

. Whitespace

All whitespace and newlines will be processed out and
used to separate tokens

Reserved Keywords

return, def, main, all data types

. Code Example

def int greyscale(string file name) {
if(image im = load(filename) == null) {
perror(“original image did not load”);
}
printf(“original image:”);
display(im);

for(int i = 0; i < size(im); i++) {
for(int j = @; j < size (im[i]); j++) {
int[] rgb = im[i][]j].RGB;

// Calculates grayscale by calculating
the average

int grey = (rgb[0] + rgb[1] +
rgb[2])/3;

im[i][j].RGB = int[3]{grey, grey,
grey};

}
printf(“grayscale image:”);
display(im);

def int main(args, argv) {
string file_name = ‘admin/image.jpg’;
greyscale(file_name);

E. Data Structures

Data Structure Syntax Description

List int[3] arr = {1, 2, Mutable data structure
3}; holding multiple
arr[0] = 0; blocks of information

of the same type

Pixel pixel pix = pixel(r, Data structure with

g, b) list of three integer
values (RGB) capped in
the range of 0-255,
and two integers (x,
y) coordinates

Image

image im =

im.

load(file_path)

Contains a image
height x image width
list of pixels

F.

Built in Library

Function Arguments Description Return Type
printf string format, Prints to On success: #
stdout, using a |characters
similar model to |written
C On failure: -1
scanf string buffer Scan from stdin |On success: #
characters
scanned
On failure: -1
size list arr Gets length of On success: int
list On failure: -1
load string file_path | Loads image from |On success:
file image
On failure: null
write string Will write image [On success: ©
file path, image |to file On failure: -1
image
display image im Shows image On success: ©
without saving On failure: -1
resize image im, int w, |Resize image to |On success:
int h new size w x h image
On failure: null
transform image im, Performs an On success:
function process |operation image
defined by the On failure: null

user in function
on each pixel in
image, and
creates a new
image

