
giraph

Daniel Benett (deb2174)
Seth Benjamin (sjb2190)

Jennifer Bi (jb3495)
Forrest Hofmann (fhh2112)

Jessie Liu (jll2219)

Fall 2017

1 Language Overview

We propose giraph, a language that simplifies graph implementation and manipulation. The lan-
guage supports directed, undirected, and acyclic graphs. If time permits, we will extend support to
bipartite, complete, and other properties. Users may initialize graphs by properties (i.e., a directed
acyclic graph with 2 children per node – a binary tree) or manually, using intuitive node-edge syntax.
Operators for join, union, intersection will make implementation of graph algorithms more concise
and readable. The motivation for our language comes from previous experience with graph algo-
rithms such as shortest path (Dijkstra’s, Bellman-Ford, Floyd-Warshall), minimum spanning tree
(Prim’s/Kruskal’s), and maximum flow (Ford-Fulkerson / Edmonds-Karp). Broader applications
include network flow, vertex and edge coloring, and linguistic modeling.

Graphs

Undirected Graphs

 Trees

Directed Graphs

 Directed Acyclic Graphs

2 Data Types

1

Type Description

graph a set of nodes and a set of edges
digraph a graph with directed edges

tree a graph that is undirected and acyclic
dag an acyclic digraph with a source and a sink
node a container for some built-in type
edge a 2-tuple containing two nodes or a 3-tuple containing two nodes and a direction boolean
set a finite unordered collection of unique built-in types
list a finite ordered collection of built-in types
map a collection of 2-tuples representing key-value pairs
int a 4-byte integer

float an 8-byte floating point value
string a finite sequence of characters

character a 1-byte value
boolean a true or false value

3 Syntax

3.1 General Syntax

Syntax Literal Description

{ a block indicator
} a block terminator
(an expression indicator
) an expression terminator
, a value separator
; a statement terminator
// a single line comment indicator
/* a multiple line comment indicator
*/ a multiple line comment terminator

3.2 Reserved Keywords

2

Keyword Description

if (expression) a control flow indicator that executes
the following block if expression is true

elif (expression) a control flow indicator that executes
the following block if previous if and elif
expressions were not true and
expression is true

else a control flow indicator that executes
the following block if previous if and elif
expressions were not true

for (statement 1 ; expression ; statement 2) a loop that performs statement 1,
executes while expression is true,
and performs statement 2
after every iteration

for (type iterating var ; collection) a loop that executes once for every element
in collection, with the element currently
iterated on accessible with iterating var

while (expression) a loop that executes while expression is true
function a function indicator
lambda an anonymous function indicator
void a void return type indicator

return a return indicator

3.3 Operators

Operator Description

= assignment operator
+ addition operator valid for int, float, string
- subtraction operator valid for int, float, string
* multiplication operator valid for int, float
/ division operator valid for int, float
% remainder operator valid for int, float
& intersection operator valid for graph, set
| union operator valid for graph, set
&& conditional and operator valid for boolean
|| conditional or operator valid for boolean
! logical complement operator valid for graph, boolean
== relational equal to operator valid for all types
!= relational not equal to operator valid for all types
< relational less than operator valid for int, float
<= relational less than or equal to operator valid for int, float
> relational greater than operator valid for int, float
>= relational greater than or equal to operator valid for int, float

3

3.4 Graph Syntax

Syntax Literal Description

-- an undirected edge
-> a singly-directed edge
<-> a doubly-directed edge
: a node initialization indicator
[a node access indicator
] a node access terminator

4 Standard Library

• Accessors/iterators:

- Iterators/accessors for graphs: nodes(), edges(), find(data), connected components()

- Iterators/accessors for trees: root(), leaves()

- Accessors for DAGs: source(), sink()

- Accessors for edges: .from, .to, .weight

- Accessors for nodes: .name, .data

• Mutators: add node(), add edge(), remove node(), remove edge(), Graph g1 + Graph

g2, g1 - g2

• Traversal: bfs(graph g, node r, lambda f), dfs(graph g, node r, lambda f), preorder(tree
t, lambda f), inorder(tree t, lambda f), postorder(tree t, lambda f)

• Visualization: render(graph, filename)

5 Typical Use Cases

1. Shortest paths (Dijkstra’s, Bellman-Ford, Floyd-Warshall)

2. Minimum spanning tree (Prim’s/Kruskal’s)

3. Maximum flow and minimum cut (Ford-Fulkerson/Edmonds-Karp)

4. Finding Eulerian tours and Hamiltonian cycles

6 Example Programs

1. Hello World

function void hello_world () {

dag hello_world = A:’h’ -> B:’e’ -> C:’l’

-> D:’l’ -> E:’o’ -> F:’ ’

-> G:’w’ -> H:’o’ -> I:’r’

-> J:’l’ -> K:’d’;

4

bfs(hello_world , A, lambda (node n) { print(n.data); });

}

2. Edmonds-Karp Algorithm

function dag augment(dag flow , dag path) {

// Get bottleneck capacity of path.

int min = path.edges ()[0]. weight;

for (edge e: path.edges ()) {

if (min > e.weight) {

min = e.weight;

}

}

// Augment flow.

for(edge e : path.edges ()) {

if (flow.has_edge(e.from , e.to)) {

int current_flow = flow.get_edge(e.from , e.to). weight;

// Add bottleneck capacity to current flow.

flow.add_edge(e.from , e.to , current_flow + min);

} else {

int current_flow = flow.get_edge(e.to , e.from). weight;

// Subtract bottleneck capacity from current flow.

flow.add_edge(e.to , e.from , current_flow - min);

}

}

return flow;

}

function digraph make_residual_graph(dag flow , dag network) {

digraph residual_graph;

for (edge e : flow.edges ()) {

int forward = network.get_edge(e.from , e.to). weight - e.weight;

int backward = e.weight;

if (forward > 0) {

residual_graph.add_edge(e.from , e.to , forward);

}

if (backward > 0) {

residual_graph.add_edge(e.from , e.to , backward);

}

}

return residual_graph;

}

function dag edmonds_karp(dag network) {

// The argument "network" contains the capacities as weights on edges.

// Flow is represented with a graph exactly equivalent to network , but

// with the flow on each edge as the weight instead of the capacity.

// First , set up initial flow of 0 on every edge.

dag flow;

5

for (edge e : network.edges ()) {

flow.add_edge(e.from , e.to , 0);

}

dag residual = make_residual_graph(flow , network);

while (true) {

map parents;

// Find shortest s-t path with BFS.

bfs(residual , network.source ,

lambda(node n) {

for (node neighbor : residual.get_neighbors(n)) {

parents[neighbor] = n;

}

});

// If we didn’t reach the sink , there is no s-t path in residual

if (! parents.contains_key(i)) {

break;

}

dag path;

node i = network.sink;

while (i != network.source) {

path.add_edge(parents[i], i,

residual.get_edge(parents[i], i). weight);

i = parents[i];

}

flow = augment(flow , path);

}

return flow;

}

6

