
Strux

Joshua Bartlett
jcb2254

Language Guru

Sophie Stadler
srs2231
Manager

Fredrick Kofi Tam
fkt2105

System Architect

Millie Yang
my2440
Tester

26 September 2017

1 Introduction
Data structures are one of the most important concepts in computer science for
beginners and seasoned developers alike. For many students, there is a certain
hurdle associated with visualizing data structures—that is, connecting the draw-
ings in a textbook to the Java or C++ they are writing. A major problem with
drawings is their static nature; there is no way to see how they are affected by
code. Strux hopes to tackle this issue by providing a link between code and data
structures in the form of visualizations. We use this term to refer to an “ASCII
art" rendering of a stack, queue, linked list, or array that is output by Strux.
These visualizations, when called via visualize(dataStructure), are printed
to the console to help programmers become familiar with the key features of
each structure, and illuminate the data their objects currently contain.

Why printing to the console versus, say, generating an image? The primary
reasons are ease of use and efficient visualization of modifications. Users can
simply scroll up through the console to see how their stack has changed, rather
than sift through a series of images. Strux doesn’t require leaving the command
line to be useful.

More generally, Strux is an object-oriented language that implements a sim-
plified Java syntax. Additionally, it enforces types, uses the ASCII alphabet, and
compiles into LLVM. These characteristics, along with its built in data struc-
tures, make it approachable and effective in its goal to increase understanding
of data structures.

1

2 Language Features

2.1 Data Types
Primitives

• num: number represented in decimal format

• string: an array of ASCII characters, presented in double quotes (")

• bool: true or false value

Builtins

• Array: fixed-length Java-style array, with 0 indexing. All elements must
be of the same type.

• ListNode: a node containing a ListNode next, and data of type string,
num, or bool

Data Structures

Stack A class that represents LIFO (last-in-first-out) operations on stack
of objects.

Constructors
Stack() Constructs an empty stack.
Stack(num[] or
string[])

Constructs a stack containing the ar-
ray’s elements.

Library functions
stack.peek() Retrieves value of top-most element of

stack without removing it from stack. If
element does not exist, method returns
null.

stack.pop() Retrieves value of top-most element of
stack by removing it from stack and
returns it. If element does not exist,
method returns null.

stack.push(e) Pushes an item e to the top of the stack.
stack.isEmpty() Returns boolean variable to indicate

whether stack is empty.
stack.size() Returns number of elements in stack.

Returns 0 if stack is empty.

2

Queue A class that represents FIFO (first-in-first-out) operations on stack
of objects.

Constructors
Queue() Constructs an empty queue.
Queue(num[] or
string[])

Constructs a queue containing the ar-
ray’s elements.

Library functions
queue.peek() Retrieves but does not remove the head

of the queue. Returns null if queue is
empty.

queue.enqueue(e) Inserts element e into the rear of the
queue if it does not violate capacity re-
strictions.

queue.dequeue() Removes element from the head of the
queue. If head does not exist, return
null.

queue.isEmpty() Returns boolean variable to indicate
whether queue is empty.

queue.size() Returns number of elements in queue.
Returns 0 if queue is empty.

LinkedList A LinkedList is comprised of ListNodes, which contain data
(either a num or string), and the next ListNode.

Constructors
LinkedList() Constructs an empty list.
LinkedList(num[] or
string[])

Constructs a linked list containing the
array’s elements.

Library functions
list.add(e) Adds item to tail of list
list.remove(num or
string data)

Removes and returns list item that con-
tains specified data. If multiple nodes
with the same data are present, remove
the first node found starting from head.

list.isEmpty() Returns boolean variable to indicate
whether list is empty.

list.size() Returns number of elements in list. Re-
turns 0 if list is empty.

Array An array is a container object that holds a fixed number of values
of a single type. The length of an array is established when the array is created.
After creation, its length is fixed. Two-dimensional arrays will be printed out
visually as Matrices by calling visualize() on the array.

3

Constructors
num[]e1,e2,e3,... or
string[]e1,e2,e3,...

Constructs a num or string array with
set size that is determined by the num-
ber of elements in the brackets. For ex-
ample, if there are e1,e2,e3, the size of
the array is 3.

Library functions
array.length Returns the number of items in array
array.find(x) Returns smallest index i, where i is the

first occurrence of x.

2.2 Operators
Basic Operators As follows:

= Assignment
+, -, *, / Arithmetic operators. In order: addition, subtrac-

tion, multiplication, division.
% Modulo
++, -- Increment, decrement
||, &&, ! Logical OR, AND, NOT
<, >, >=,
<=, ==, !=

Traditional value comparators

[] Array indexing
length Access array length

Control Flow Control flow mostly follows Java conventions.

• if (condition)/elif (condition)/else: conditional statements

• for (initialization; termination; increment): standard for-loop

• forEach item in iterable : replaces Java’s enhanced for loop. Used to
iterate over something like elements in an array.

• while: standard while-loop

• break, continue, return: exit a loop or function.

Function Signature

returnType functionName(argType argument) {
:(function body):
return;

}

4

Logging to Console

• print("your output here"): prints to console

• visualize(dataStructure): prints data structure visualization to con-
sole

Comments Notation for single- and multi-line comments will be consistent.
Symbols to signify a commented portion of code will resemble reflective “frowny
faces”

:(This is a comment.):
:(

So
is
this.

):

2.3 Conventions
• Semicolons occur at the end of a line.

• Indentation (4 spaces) is used for readability, but not enforced by the
compiler.

• Braces ({}) are required to delimit loops, conditionals, and functions.
They are necessary even for single line statements.

3 Sample Programs

3.1 Stack
Program

void main() {
Stack stack = new Stack(new num[]{1, 2, 3});
visualize(stack);

stack.push(4);
visualize(stack);

stack.pop();
visualize(stack);

}

5

Output

+---+
| 3 | <- Top
+---+
| 2 |
+---+
| 1 |
+---+

+---+
| 4 | <- Top
+---+
| 3 |
+---+
| 2 |
+---+
| 1 |
+---+

+---+
| 3 | <- Top
+---+
| 2 |
+---+
| 1 |
+---+

3.2 Queue
Program

void main() {
Queue queue = new Queue(new num[]{4,5,6});
visualize(queue);

queue.enqueue(1);
visualize(queue);

queue.dequeue();
visualize(queue);

}

6

Output

Head Tail
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+

Head Tail
+---+---+---+---+
| 4 | 5 | 6 | 1 |
+---+---+---+---+

Head Tail
+---+---+---+
| 5 | 6 | 1 |
+---+---+---+

3.3 LinkedList
Program

void main() {
LinkedList list = new LinkedList(new num[]{0, 1, 2, 3, 4, 5});

visualize(list);
print(list.isEmpty());

for (num i = 6; i < 10; i++) {
list.add(i);

}

visualize(list);

list.remove(4);
visualize(list);

return list.size();
}

7

Output

Head Tail
+---+ +---+ +---+ +---+ +---+ +---+ +------+
| 0 |->| 1 |->| 2 |->| 3 |->| 4 |->| 5 |->| null |
+---+ +---+ +---+ +---+ +---+ +---+ +------+

false

Head Tail
+---+ +---+ +---+ +---+ +---+ +---+ +-----+ +---+ +------+
| 0 |->| 1 |->| 2 |->| 3 |->| 4 |->| 5 |->| ... |->| 9 |->| null |
+---+ +---+ +---+ +---+ +---+ +---+ +-----+ +---+ +------+

Head Tail
+---+ +---+ +---+ +---+ +---+ +-----+ +---+ +------+
| 0 |->| 1 |->| 2 |->| 3 |->| 5 |->| ... |->| 9 |->| null |
+---+ +---+ +---+ +---+ +---+ +-----+ +---+ +------+

3.4 Array
Program

void main() {
num[] list = new num[]{0, 1, 2, 3, 4, 5};
print(list.length);
visualize(list);
list[2] = 6;
visualize(list);

}

Output

6
[0, 1, 2, 3, 4, 5]
[0, 1, 6, 3, 4, 5]

8

