
Pie-Num Language Proposal
Hadiah Venner (hkv2001)

Hana Fusman (hbf2113)
Ogochukwu Nwodoh(ocn2000)

Motivation:
Our motivation for our language is the functionality of NumPy which is a library for the
Python programming language. NumPy adds support for large, multidimensional arrays
and matrices, along with a large collection of high-level mathematical functions to
operate on these arrays. We want to create a static language that has some of the array
manipulation power of NumPy. This would then allow us to write programs that involve
manipulating arrays and matrices and doing complex mathematical calculations on
them. This could be quite useful in a number of scientific and artistic fields such as
machine learning, vector art and finance. We want to mimic and also enhance the ease
of usage and flexibility in manipulating arrays that NumPy provides.

Description of Language:
Pie-Num is a static array manipulation language which implements some of the features
of the Python library Numpy. It is an imperative language designed to have very
intentional syntax, allowing the user to do complex array and matrix calculations without
having to know exactly how these calculations are implemented.

The language contains functions for the creation of N-dimensional arrays and allows
these arrays to be indexed and iterated over. This allows for matrix operations such as
matrix multiplication, scalar multiplication, addition, subtraction and finding the inverse
of a matrix. The language can be used to populate the arrays with strings as well as
numbers. String operations such as string concatenation can be performed as well as
various forms of statistical analysis such as the average and standard deviation can be
calculated. The language will also have functions which make it possible to sort, search
and count the elements of the arrays.

This functionality opens up a number of possibilities that we’re hoping to implement. For
instance, we’re looking into being able to compute linear regression lines by finding the
least-squares solution using matrix operations. And there is also the possibility of using
matrix operations like scalar multiplication to tint and resize images.

Summary of Parts of the Language

● Array objects
○ N-dimensional array type which can be indexed using for example N

integers.
○ The N-dimensional array

● multidimensional container of items of the same type and
size

○ Data type objects
● Type of the data (integer, float, string etc.), Size of the data

(how many bytes is in e.g. the integer), Byte order of the
data (little-endian or big-endian)

○ Indexing
● can be indexed x[obj] syntax

● Iterating Over Arrays
○ To visit every element of an array, To visit the

elements of an array in a specific order, To modify the
array elements, (must specify either read-write or
write-only mode)

● Routines
○ Array creation routines

● Return a new array of given shape and type, without
initializing entries.

● Return a new array of given shape and type, filled with
zeros.

● Return a new array of given shape and type, filled with ones.
○ Array manipulation routines

● Copies values from one array to another.
● Gives a new shape to an array without changing its data
● Join a sequence of arrays along an existing axis

(concatenate).
● Return a new array with sub-arrays along an axis deleted

(delete).
● Insert values along the given axis before the given indices.

https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#arrays-indexing
https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
https://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html
https://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html
https://docs.scipy.org/doc/numpy/reference/arrays.html
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#available-ufuncs
https://docs.scipy.org/doc/numpy/reference/arrays.html
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
https://docs.scipy.org/doc/numpy/reference/routines.html
https://docs.scipy.org/doc/numpy/reference/arrays.scalars.html
https://docs.scipy.org/doc/numpy/reference/arrays.nditer.html

● Append values to the end of an array.
● Return a new array with the specified shape
● Reverse the order of elements in an array along the given

axis.
● Gives a new shape to an array without changing its data.

○ String operations
● Return element-wise string concatenation for two arrays of

str or unicode.
● Return (a * i), that is string multiple concatenation,

element-wise
● Equal Return (x1 == x2) element-wise.
● Not Equal Return (x1 != x2) element-wise.
● Greater than or Equal Return (x1 >= x2) element-wise.
● Less than or Equal Return (x1 <= x2) element-wise.
● Greater Return (x1 > x2) element-wise.
● Less Return (x1 < x2) element-wise.

○ Financial functions
● Functions to calculate financial equations:

○ Future value, present value, IRR(Internal Rate of
Return), Cash Flow series...

○ Linear algebra
● Dot product of two arrays.
● Matrix product of two arrays.

○ Mathematical functions
● Sin, Cos, tan….

○ Matrix library
● Interpret the input as a matrix.
● Returns a matrix from an array-like object, or from a string of

data.
● Return a new matrix of given shape and type, without

initializing entries.
● Return a matrix of given shape and type, filled with zeros.

https://docs.scipy.org/doc/numpy/reference/routines.math.html
https://docs.scipy.org/doc/numpy/reference/routines.bitwise.html
https://docs.scipy.org/doc/numpy/reference/routines.char.html
https://docs.scipy.org/doc/numpy/reference/routines.fft.html
https://docs.scipy.org/doc/numpy/reference/routines.io.html
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
https://docs.scipy.org/doc/numpy/reference/routines.ma.html
https://docs.scipy.org/doc/numpy/reference/routines.math.html
https://docs.scipy.org/doc/numpy/reference/routines.matlib.html
https://docs.scipy.org/doc/numpy/reference/routines.financial.html

● Matrix of ones.
○ Sorting, searching, and counting

● Return a sorted copy of an array.
● Counts the number of non-zero values in the array

○ Statistics
● Min, Max, Percentile, Median, Average, STD,

Language Syntax:
● Special Symbols:

Symbol Meaning

; Denotes the end of a line of code

● Primitive Data Type:

Type Definition

int Integer value(32 bits)

float Floating point value (32 bits)

boolean true/false value(1 bits)

Short two’s complement integer (16 bits)

Long two’s complement integer (64 bits)

Double floating point value (64 bits)

● Arithmetic Operations:

* On two primitive data types this
performs multiplication. On an array (1D
or 2D) and a primitive data type this
multiplies all values in the array by the
primitive data type. Between two 1D
arrays this calculates the dot product.
Between two matrices this performs
matrix multiplication between two
matrices, matrix A and B. If matrix A’s
width is not equal to matrix B’s height.

https://docs.scipy.org/doc/numpy/reference/routines.set.html
https://docs.scipy.org/doc/numpy/reference/routines.sort.html
https://docs.scipy.org/doc/numpy/reference/routines.statistics.html
https://docs.scipy.org/doc/numpy/reference/routines.sort.html

+ On two primitive data types this
performs addition, on two 1D arrays this
creates an array with the elements of
both arrays. One two matrices with the
same dimensions this creates a matrix
with the elements of both matrices. This
throws an error if done between
matrices of different dimensions. This
throws an error if done between a
primitive data type and array.

- On two primitive data types this
performs subtraction, on two 1D arrays
this creates an array with the elements
of the matrix on the left hand side of the
operator minus the elements on the
right hand side of the operator. This
throws an error if done between two
matrices.

** Between two 1D arrays of length 3 this
calculates the cross product. This
throws an error if done between two
matrices or 1D arrays that aren’t both of
length 3.

^ Creates a matrix that is the inverse of
the matrix this is used on. Throws an
error if done on a primitive data type, 1D
array, or matrix that is not square.

● Logical Operators (if applicable):
○ < strictly less than
○ <= less than or equal to
○ > strictly bigger than
○ >= bigger than or equal to
○ != not equal to
○ == if identical

● Comments:
○ # like in python

■ For example:
● #this is a comment

● Function prototype/Function call:
○ returnType functionName(param1,param2 ...) { function body }
○ functionName(para1,para2 ...)

● Data Structures:
○ Arrays

● Control Flow:
○ if/else:

■ if (bool_expr) { Statement 1 }
■ elif (bool_expr) { Statement 2 }
■ else{ Statement 3 }

● loops:
○ while (bool_expr) { Statement; }
○ for (val = a to b) { statement; }

Example of Code:

#declaring a matrix by using the array data structure
int array1[3][4];
int array2[4][3];

#filling the matrix with values
int m=0;
int n= 100;

for(int i=0; i<array.length(); i++) {

for (int j=0; i<array[0].length();j++) {
array1[i][j]=m++;
array2[j][i]=n--;

}
}

This specifies that the value in an array is 6 in the first row and the fourth column :
int[0][3] = 6;

#matrix multiplication, creates a 3x3 square matrix
int array3 = array1 * array2;

#inverse of array3
int array4 = array3^;

#Indexing an array:
int k = array4[0][0];

#creating two arrays
int array5[3];
int array6[3];

#Iterating over every element in array:

for(int i = 0; i < array5.size(); i++)
{

array5[i] =m++;
 array6[i]=n--;
}

#computing dot product
int b = array5 * array6;

#computing cross product
int array9 = array5 ** array6;

#Create an array with the elements of both arrays
array8 = array5 + array6;

Example Program that shows how to tint and resize an image in Pie-Num

#reads image into Pie-Num array
img = read_image(image.jpg);

#tint image by scaling each of the color channels
img_tinted = img * [1, .95, .9];

#resizes image to 200 x 200 pixels
img_tinted = resize_image(img_tinted, [200, 200]));

#save image
img_save = (image.jpg, img_tinted);

https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

