
PIXL

Maxwell Hu (mh3289)
Justin Borczuk (jnb2135)
Marco Starger (mes2312)

Shiv Sakhuja (ss4757)

Description

Point processing is the enhancement or modification of an image through individual pixel
manipulation. PIXL is a Java-like language that utilizes the pixel as a primitive type in order to
more easily process images and apply various filters to image signals. Individual pixels can be
added to one another, subtracted from one another, and negated, while pixel arrays can also be
added, subtracted, and negated, as well as masked, intersected, blurred, sharpened, and
antialiased, among other transformations.

In order to easily work with image files, PIXL has file I/O capabilities. More importantly,

an image file can be easily loaded into a pixel matrix in order to process the image signal. A
pixel matrix can also easily be written into a file for export.

For custom transformations that are not defined in the language, PIXL includes special

loops that can easily loop through all the pixels of an image in order to apply a common function
to each pixel, and can do this for multiple images as well for functions that manipulate images
based on another image’s pixel values.

Data Types

Data Type Documentation Declaration

int Integer value int x = 10;

float Floating point value float x = 10.0;

File A file File f = “image.ppm”;

String A string String s = “hello”;

pixel Length 4 tuple (r,g,b,a) pixel x = (255,255,255,0.5);

boolean True/False Value boolean x = True;

array List of data that is declared
in a way similar to java;
primarily for pixels

pixel[] x = new pixel[5];

matrix 2d array pixel[][] x = new pixel[5][5];

Arithmetic and Logical Operators
+, -, =, *, /, %, ++, --, ==, !=, &&, ||, <, >, <=, >=, !
Comments begin with //
Multi-line comments /* … */
Semicolons (;) end a statement

Pixel Operators

Operator Description Example

+ + works the same way as Java.
However, when adding two pixels
together you add the corresponding
r,g,b values in each pixel together to
create a new tuple. If the sum of two
corresponding values exceeds 255,
then 255 is used as the sum value. +
can also be used as an operand
between two matrices of the same
dimensions: the + operator is applied
to each corresponding pixel pair and
adds them using the pixel + operator.

pixel x1 = (100,100,200,0.5)
pixel x2 = (50,50,100,0.5)

pixel x3 = x1 + x2

// x3: (150,150,255,0.5)

- Works the same way as addition,
except you subtract the two tuples.
Absolute value is used to avoid
negative integers. - can also be used as
an operation on matrices. Like
addition, each corresponding pixel
pair is subtracted.

pixel x1 = (100,100,200,0.5);
pixel x2 = (50,50,100,0.5);

pixel x3 = x1 - x2;

// x3: (50,50,100,0.5)

= The equals assignment operator sets pixel x = (100,50,100,0.5);

the value of the left variable equal to
the value of the right side.

pixel y = x;

// y: (100,50,100,0.5)

== The equality check for pixels returns
True if the pixels have the same rgba
values, and False if any of the rgba
values differ.

pixel x = (100,100,100,0.5);
pixel y = (100,100,100,0.4);
boolean b = x == y;

// b: False

&& Logical AND is applied to two pixels
in the following way:

1)If the pixels are the same, return the
pixel.

2) If the pixels are different, return
(0,0,0,0).

The Logical AND operator can also be
applied to two matrices. In this case, it
takes corresponding pixel pairs in two
matrices of the same size and applies
the two rules above to output a third
matrix.

pixel x = (100,100,100,0.5);
pixel y = (100,100,100,0.5);
pixel z = x && y;

// z: (100,100,100,0.5);

Keywords

Keywords Description

if if (cond) {}

else else {}

else if else if (cond) {}

for() for(int i=0; i<4; i++){}

for(pixel x, int i,j :
pmatrix1) {}

 Enhanced for loop that makes traversing pixel arrays/matrices
easy. The documentation on the left provides a way to loop through
a pixel matrix left to right (when the end of a row is reached the
loop moves one row down and repeats the process). The loop
provides an i and j integer as indices.

Sample Code

// Sets an image to grayscale

File f1 = “image1.ppm”;

pixel[][] p1 = f1.load();

for (pixel x, int i,j : p1)

{

int avg = (x.getRed() + x.getGreen() + x.getBlue())/3;

p1[i][j] = (avg, avg, avg, x.getAlpha());

}

// Keeps only the common pixels of two images (AND) at the matrix level

File f1 = “image1.ppm”;

File f2 = “image2.ppm”;

pixel[][] p1 = f1.load();

pixel[][] p2 = f2.load();

pixel[][] out = p1 && p2;

// Keeps only the common pixels of two images (AND) at an individual pixel level

File f1 = “image1.ppm”;

File f2 = “image2.ppm”;

pixel[][] p1 = f1.load();

pixel[][] p2 = f2.load();

pixel[][] p3 = p2.zero();

for (pixel x,y, int i,j : p1,p2)

{

p3[i][j] = x && y;

}

// Negates an image

File f1 = “image1.ppm”;

pixel[][] p1 = f1.load();

for (pixel x, int i,j : p1)

{

p1[i][j] = (255-x.getRed(),255-x.getGreen(),255-x.getRed(), x.getAlpha());

}

