
NumNum Language Proposal 1

 COMS 4115: NumNum Language Proposal

Programming Languages and Translators

COMS 4115 W Section 1

Prof. Edwards

September 26, 2017

Sharon Chen syc2138 Tester

Kaustubh Gopal Chiplunkar kc3148 Language Guru

Paul Czopowik pc2550 Manager

David Tofu dat2149 System Architect

Art Zuks az2487 Tester

NumNum Language Proposal 2

Abstract 3

Language Purpose 4

Basic Syntax 4

Core 4

Arithmetic 5

A Sample Case Study 6

edit_movie.mm 7

black_white.mm 8

blur.mm 8

NumNum Language Proposal 3

Abstract

We propose a matrix-manipulation language that allows basic arithmetic

operations on arrays containing numbers. The main feature of the language is a

Matrix object that contains built in features such as an index, bound checks,

iteration, equality comparison and copy operation. The Matrix object would also

include specific Matrix operations. More advanced algorithms such as sorting or

searching are intended to be provided via libraries designed in our language.

The language also contains general features to allow building of such

libraries and contains. These include primitive numerical data types such as

integers and floats, flow control using functions, loops and decision if/then/else

statements. Special keywords like _el(returning the current element), _next, _prev

are introduced for quick access of special elements in arrays.

NumNum Language Proposal 4

Language Purpose

The purpose of our language is to provide a native way to manipulate

matrices and arrays. To make matrix manipulation easy, the language would

feature simple syntax to allow basic matrix arithmetic, feature built in safety such

as bound checking to prevent common errors and the ability to iterate through the

data in the matrix.

An example of our language implementation could be to create programs that

manipulate images. For example a program could be written to blur images or

remove or adjust color information. Images are made of numbers arranged in

matrices, which are multi-dimensional arrays of numbers. Because our language

offers a native matrix interface it simplifies implementing libraries that would

allow for image manipulation.

Basic Syntax

Core

initialization
int a = [];
int b = [1];
int c = [2, 3];
int d = [[1, 2], [3, 4]];
int e = [c, d]; # e = [[2, 3], [[1, 2], [3, 4]]]

double g = [3.14];
bool f = [true];

NumNum Language Proposal 5

func int foo() {
 return 3;
}

Arithmetic

element-wise arithmetic
int a = [1, 3];
int b = [2, 4];
int c = a + b; # c = [3, 7]
c = a - b; # c = [-1, -1]
c = a * b # c = [2, 12]
double d = a / b; # d = [.5, .75]

batch arithmetic
int a = [1, 3];
int b = [2];
int c = a + b; # c = [3, 5]
c = a - b; # c = [-1, 1]
c = a * b # c = [2, 6]
double d = a / b; # d = [.5, 1.5]

matrix arithmetic
int a = [1, 3];
int b = [2];
int c = [a] + [b]; # c = [1, 3, 2]
c = [a] * [b] # c = [1, 3, 1, 3]

bool a = [true];
bool b = [false];
int c = [1];
int d = [2];

boolean arithmetic
bool e = a == b; # e = [false]
e = a && b; # e = [false]
e = a || b; # e = [true]

logical operators

NumNum Language Proposal 6

e = c > d; # e = [false]
e = c < d; # e = [true]
e = c >= d; # e = [false]
e = c <= d; # e = [true]
e = c == d; # e = [false]
e = c != d; # e = [true]

traversal
int c = [4,6,3,2,5];
double avg = [0];

#running average
iterate c {
 avg = (_el + avg * _pos-1)/_pos;
}
print avg; # 4

A Sample Case Study

Emily is working on an animation team at Pixar, and she intends to create a

black-and-white scene that happens behind a window. She is given a sequence of

color images that make up the scene. She has two goals: to turn each image in the

sequence into black-and-white, and to blur each image in the sequence. As a result,

she codes up the following programs, using our language because of its ease of use

in matrix and image manipulation.

NumNum Language Proposal 7

images.ppm (image manipulation library)

traversal
int c = [4,6,3,2,5];
double avg = [0];
func int read_ppm(str fileName) {

ppm_lines = readFile(fileName).lines()

Read dimensions, .split(" ") splits a string by spaces
dim_x = ppm_lines[0].split(" ")[0]
dim_y = ppm_lines[0].split(" ")[1]

int ppm_mtx[dim_x * dim_y * 3] =iterate ppm_lines[2:] with row {

int int_row = iterate row.split(" ") with word {
return int(word) # Convert to int format

}
return int_row

}

Reshape matrix, each pixel takes up three ints for RGB
ppm_mtx.reshape(dim_x, dim_y, 3)

return ppm_mtx

}

edit_movie.mm

takes in a list of matrix representation of images

double movie = readFile "./coloredMovie.txt";
iterate movie {
 double image = _el;
 int idx = _i;
 writeFile "./coloredImage" + idx + ".txt";

 # do something with image

 image.print; # see resulting image
}

NumNum Language Proposal 8

black_white.mm

takes in an matrix representation of an image
rounds down things greater than .5

double image = readFile "./coloredImage1.txt";
iterate image {
 if (_el <= .5) {
 _el = 0;
 } else {
 _el = 1;
 }
}

image.print;

blur.mm

the keyword _surrounding when iterating an array
return the elements adjacent to the current element
while filtering out elements out of bounds
_surrounding = [_top,_bottom,_left,_right]

double image = readFile "./matrixImage1.txt";
double blur = readFile “./blurImage.txt”;
iterate image blur {
 _el2 = _el1.surrounding.avg();
}

image.print;

NumNum Language Proposal 9

Bubblesort.mm

#Bubble sort to sort an array

int to_sort [20,15,6,4];

iterate in range 1:to_sort.length(){

iterate to_sort {
if (_el>_next){

temp=_el;
_el=_next;
_next=temp;

}

}
}

to_sort.print();

