

 Braxton Gunter (beg2119) - Tester
 Clyde Bazile (cb3150) - Language Guru
John Anukem (jea2161) - Systems Architect

Sebastien Siclait (srs2232) - Tester
Terence Jacobs (tj2316) - Project Manager

Newbie: A Language for Those New to Programming

INTRODUCTION
Traditional high-level programming languages are often too cryptic and difficult for new users to
understand. The goal with Newbie is to create a pseudo-code like programming language aimed
to simplify the programming experience for beginner developers. This will allow new coders the
ability to design, implement and better understand common algorithms without the frustration of
learning specific programming syntax. Our standard library will specifically allow for easy
implementation of basic algorithms involving linked lists, graphs, and trees.

FEATURES

Type inference - The compiler will automatically infer variable types at compile time. This will
make it easier for users as they no longer need to declare parameter or variable types. As such,
if we declare coms = 4115 and class = ‘plt’, the compiler will interpret these variables as an
integer and string, respectively. This will be done using hindley milner type inference with a
standardized notation for common data types.

Automatic variable declaration - During compile-time, we will be identify all variables and their
corresponding types. These variables will be automatically initialized to predictable default
values. This means that variables do not need to be explicitly declared or initialized.

Dynamic Instance Attribution - The developer will have the ability to programmatically add and
edit attributes on an object instance.

DEFAULT DATA TYPES AND PRIMITIVES

num Int or Float

char Int or UTF-8 Encoded Symbol

bool Boolean Values true or false

list Ordered Set of AnyType

string Wrapper for Character Array

Newbie

KEYWORDS & OPERATORS

+ Addition

- Subtraction

* Multiplication

/ Division

^ Exponent

= Assignment

% Modulo

! | not Negation

== | equals Equivalence

!= (not equals) Difference

< Less Than

> Greater Than

<= | ≤ Less Than or Equal To

>= | ≥ Greater Than or Equal To

// Inline Comment

/* … */ Multiline Comment

and Union

or Intersection

class Class Definition

def Function Definition

return End

null No value

true Boolean

false Boolean

Newbie

CONTROL STATEMENTS

if Conditional

else Catch-all Conditional

else if Additional Conditional

for each Loop for Items in Set

while Loop within Conditional

break Exiting Loops

continue Progress to Next Iteration of Loop

SYNTAX
The syntax of our language will resemble pseudo-code.
Tabs and newlines are indication of scope.
The string datatype is essentially a wrapped character array.
Specifying types is not necessary, but can be done in whole or in part.
.noob file type extension

Newbie

SAMPLE CODE

BREADTH-FIRST SEARCH // uses queue

1. def BFS(G, s)
2. for each vertex 'u' in G

3. u.color = “WHITE” // undiscovered

4. u.d = ∞

5. u.π = null // predecessor

6. s.color = “GRAY” // has white vertices connected to it

7. s.d = 0

8. s.π = null

9. Q = null // queue is null

10. Enqueue(Q, s)

11. while Q ≠ null

12. u = Dequeue(Q)

13. for each 'v' in G.Adj[u]

14. if v.color == “WHITE”

15. v.color = “GRAY”

16. v.d = u.d + 1

17. v.π = u

18. Enqueue(Q, v)

19. u.color = “BLACK” //discovered along with everything connected
20.
21. class NODE
22. string color
23. num d
24. NODE π
25.

