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Proposal 

Abstract 
In this document we propose Inception, a new language developed to make the design and 
implementation of deep learning models easier and more intuitive. Deep learning is an 
extremely popular field that is quickly becoming a mainstay of major tech companies like Google 
and Amazon. Deep learning models consistently beat state of the art algorithms in many fields. 
Deep learning models are mostly created with libraries built on top of Python, e.g. Tensorflow. 
Though powerful, these libraries lack visual clarity and are in general cluttered by other 
unnecessary features coming from a general purpose language like Python. Inception is a 
language built from the ground up specifically for deep learning models that emphasizes visual 
clarity and minimalism. We believe Inception can help deep learning experts program deep 
learning models the way they think about deep learning models, leading to fewer errors and less 
programming time. 

Overview of domain  
In the past few years deep learning has seen an explosion of interest leading to a corresponding 
explosion in tooling. Most popular deep learning model implementations come from Python 
based libraries - specifically, Tensorflow, Theano, and PyTorch (there are some C and C++ 
libraries, but for now these three big ones will suffice for the domain discussion).  
 
Each of these libraries operates by creating a graph structure in sequential run through to 
represent the model, and then running the generated graph with specific inputs in a separate 
function call. In other words, these libraries separate graph construction with graph running. 
These libraries also expose individual variable parameters, allowing users significant flexibility in 
manipulating the graph. We call these libraries neuron-based libraries, as they focus on neuron 
level instantiations and manipulations (though they may have helper functions that define full 
layers/models).  
 
Certain operations and functions are called repeatedly in the deep learning world. In the libraries 
mentioned above, writing large models is fairly tedious and there is no good way to rapidly 
duplicate commonly used components. Two wrapper libraries, Slim and Keras, attempt to 
decrease verbosity and emphasize readability by exposing a large common library of commonly 
used model layers and handling all neuron interaction in the background. Slim and Keras make 
writing large models and duplicating functionality significantly easier by optimizing for model 
creation at a macro level. We therefore call Slim and Keras layer based libraries, instead of 
neuron based libraries.  



Purpose 
Inception aims to be a layers-based library like Slim and Keras, optimized for complex deep 
learning models. Inception optimizes for deep learning through Inception’s unique syntax: 
almost everything in the language is defined as a layer (processing) or as an array (data). The 
minimalist nature of the language makes it extremely easy to quickly define layers that stack 
into full, complex deep learning models. The language also allows users to quickly identify how 
a data flows through a model (i.e. what components of a piece of code are processing and what 
components are data).  

Language Outline 

Types 
Inception will have five types: arrays, layers/functions, floats, booleans, and strings. As in 
python, types will be inferred by the variables when stored and will throw a runtime (compiler?) 
error when incorrect types are passed between layers. 
 
arrays: arrays are the fundamental building block of our language and most inputs to and 
outputs from layers will be a array. We borrow the notion of arrays from Matlab and python’s 
numpy library to refer to a collection of numbers with any number of dimensions rather than the 
one-dimensional type common in many languages. Unlike numpy and to a lesser extent Matlab, 
our arrays can be off dimensional (i.e. [[1, 2, 3], [1, 2], [1]] )  and it is up to the 
layers/functions to interpret these correctly or throw an error. 
 
layers/functions: In Inception, layers and functions are essentially and functionally the same 
entity. They both receive input via our arrow notation, operate on input, and produce output that 
can be assigned to a variable or passed to a different layer. Both complex (e.g. neural-network 
convolutions, backpropagation, etc.) and simple (arithmetic, modulo, etc.) operations are 
implemented and can be used via layers. (See syntax section) 
 
Floats: basic 32-bit floating point numbers used to do calculations. We decided against 
including integer types as the majority of neural network applications required floating point 
numbers 
 
Booleans: True or False 
 
Strings: Strings will mostly be used either as inputs (in the form of an array) to a network layer 
and for clean display of data. 
 



Operators 
=> By far the most common operator used in Inception will be the arrow symbol (=>). This 
operator is similar to a pipe in standard unix systems with some added functionality. Generally, 
the right arrow takes the output generated by the previous layer or variable, combines it with 
additional inputs if provided, and either sends the aggregated data to the next layer or saves it 
in a variable. 
An example as below 

layer1() => layer1_data, auxiliary_data => layer2() => Print() 
would be equivalent to 

layer1_data = layer1() 
Print(layer2(layer1_data, auxiliary_data)) 

in common imperative languages. Our motivation behind using this arrow notation is the 
inherent feed forward nature of artificial neural network where layers are stacked atop one 
another and the outputs from one layer is passed as the inputs to the next. The goal is for our 
language to help the programmer better visualize and implement this structure. 
Additionally, the arrow notation will extend into and from control sequences. For example the 
code 

input => 
for (i = 0; i < 5; i++): 

layer1() => 
would pass input through a sequence of five layer1’s.  
 
+, -, /, * : For now, arithmetic operators will only work with our float types and we will support 
parenthesis with them. For arrays, we will use special arithmetic layers to indicate pairwise 
operations within the array. However, we may consider implementing syntactic sugar to do array 
operations with the standard operators for floats. These will not work on strings or booleans. 
 
  
Anonymous Functions? 

Syntax 
Layer Calls: Layers are differentiated from common variables by the addition of a set of 
parenthesis (a function “call”). We allow parameter values to be input within the parentheses but 
“true” inputs should be passed via the right arrow notations. 
 
def: Like in python, this keyword will be used to define a function/layer. def must be followed by 
a name identifier and a set of parentheses which can be empty or include the names of input 
arguments and parameters to be used by the program. All of the instruction within the scope of 
a given function should be indented four spaces (as in python). 
 



if/else: We borrow the if/else statements precisely from python with the same colon syntax and 
indentation rules. One question to consider is if outputs can be right-arrow passed directly into if 
statements (i.e. layer1() => if ==True: …) to synergize with the continuity of passing 
inputs directly via =>. This would make the if statement essentially a layer 
 
for (i = <int>; i < N; i++): We support C and Java style looping. 

Example Script 
As the goal of our language is an efficient and clear method to describe and use Neural 
Networks, our canonical example is a minimalistic two layer network that can be used for simple 
learning and classification tasks such as the popular MNIST Handwriting recognition. 
 

def MNIST(images, labels): 
'''Defines a simple two layer network that can be 
trained to recognize the MNIST dataset. There are 
two fully connected layers which feed into a Softmax 
Cross-Entropy loss function. Finally, depending on 
external specification, if the network is training 
we backprop all gradients 
''' 

images => 
FC() => 
FC() => 
fc_results, labels => 
SoftMaxCrossEntropyLoss() => loss => 
Print("loss: ") 

 

loss => 
if Train: 

SGD() => 
output 

return output 
 

def runMNIST(images, labels): 
'''Runner method that runs training and test 
images through network 
''' 

80 => epochs 
MNIST => trainedMNIST 
for (i = epochs; i > 0; i--): 

trainedMNIST, images[:1000], labels[:1000] => 
nn.Train() => trainedMNIST 



 

for (i = 5; i > 0; i--) 
trainedMNIST, images[1000:], labels[1000:] => 
nn.Run() 

 

The MNIST example demonstrates the ease of passing the outputs from one layer to the next 
layer. Since the fundamental building blocks of the Inception language are layers and arrays 
(matrices), each arrow (=>) indicates passing the array output from the previous layer to the 
next layer. 
 
The runMNIST method demonstrates how training and running each network will work. The 
weights are learned via the nn.Train() layer which takes as input a network definition and the 
training data (images and their corresponding labels). The trained network is then stored in a 
user-defined trainedMNIST variable. When this variable is passed into nn.Run() along with 
images and labels, the network will return results from test images. 
 
Some common layers: 
FC() : Fully-Connected layer 
This layer takes an n-dimensional array of inputs and returns a k-dimensional output array 
calculated by the learned weights in the FC layer.  
 
Conv(): Convolutional layer 
This layer takes an n-by-k dimensional array of inputs and returns an m-by-j dimensional output 
dependant on the kernel size and stride. 
 

def GCD(x, y): 
'''Example GCD program using the Euclidean algorithm 
to recursively find the GCD between two integers 
''' 

x, y => 
Mod() => x 
if x == 0: 

return y 
y, x => 
GCD() 

 

[4, 6, 7], [8, 10 14] => 
GCD() 

 

>>> [4, 2, 7] 
 

This example GCD script demonstrates how to use layers outside of the context of neural 
networks. The layer/function GCD()  takes in two inputs x and y which are both passed into the 



Mod() layer. This layer takes a pairwise modulo of the elements and stores the resulting array 
into x, clobbering the old value. The algorithm checks if x == 0 in which case we return the 
GCD. Otherwise, the inputs y and the new x are then passed again into the GCD() recursively. 
We hardcode the inputs to demonstrate how to call the GCD function/layer. 
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List of Layers 

Operators 
- Add 
- Sub 
- Mult 
- Div 
- Mod 

Control 
- Loop 
- Conditional 

Models 

Layers 
- FC 
- Conv 
- LSTM 

Losses 
- SoftmaxCrossEnt 
- SigmoidCrossEnt 

Optimizers 
- Adam 
- SGD 

Misc 
- StopGradients 


