
COMS W4115
Project Proposal

Group Members:
Montana Robert St.Pierre
Jason Delancey

Roles:
Manager - Montana
Language Guru - Montana
System Architect - Jason
Tester - Jason

Responsibilities:
Montana - Timely completion of deliverables
Montana - Language design
Jason - Compiler architecture, development environment
Jason - Test plan, test suites

Weekly Meeting Time:
Saturday/Sunday - 12 noon

Our language, with the working name GraphC, will be a lightweight language designed to handle
problems with graphs specifically. While the language will be general purpose, it targets the
domain of problems utilizing graphs and graph-like data structures. The language will be
compiled ahead of time, strongly typed and statically typed. Syntax will be designed with user
friendly representation of graphs as a priority, while also drawing elements from C-like
languages. The aim is to develop a modern and clear syntax that is not overly verbose. To
accomplish this, the language will feature both declarative functional styles and imperative styles
in addition to stripping extraneous characters from code when possible.

Programs involving graphs is an example of programs meant to to be written in our language.
This can be anything from mathematical graph theory problems to visualizing data in lists to
functioning as a scripting language. The flexibility of the graph structure will enable a simple
interface for the programmer to quickly develop algorithms on complex sets of data that other
languages with similar universal data structures make difficult.

Graphs are the main element of the language, and the center of the design. They will be an
associative data structure storing the representation of vertices and edges. Implementation will

be extensible, but the inherent capabilities will allow direct and undirected edges between nodes.
Nodes and edges will be associative with their name serving as a key and their value being data.
This representation will allow other data structures to be easily represented as most are types of
graphs. For example, singly and doubly linked lists can be initialized as a linear graph, and a
reference to the head and tail can be stored to append or remove from the list. Stacks and queues
follow from this definition. Array based structures will be represented as a graph with vertices
and no connecting edges. The associative nature of the graph structure will enable numeric keys
for traditional array access in addition to associative access.

In addition to graphs, there will be a numeric, boolean and string primitive types. Types will be
inferred whenever possible to enable static typing. We will include a standard library featuring
common graph algorithms, such as traversals, topological sorts, dijkstra's, etc. in addition to a
basic display capability. These will be extensible to enable precise control over graph/tree/list
visualization. Libraries representing other data structures will be trivial to construct. These
design choices ensure that the language will be programmer friendly, relatively fast and
lightweight.

Please see below for an example of a very simple program solving the traveling salesman
problem.

graph cities = {
 newyork <> chicago = 714
 newyork <> denver = 1629.23
 newyork <> miami = 1093.57
 chicago <> miami = 1193
 chicago <> denver = 919.23
 denver -> miami = 1727.17
 miami -> denver = 1000
}

function pathLength(graph g) {
 float sum = 0
 foreach (edge e : g) {
 sum += e
 }

 return sum;
}

function tsp(graph g) {
 return min(brute(g, pathLength))
}

graph shortestRoute = tsp(cities)

display(shortestRoute)

