Genesis
And on the first day...

Samuel Cohen (slc2206) - Manager
Michael Wang (mlw2167) - Language Guru
Leon Stilwell (1s3223) - Language Guru

Jason Zhao (jsz2107) - Systems Architect
Saahil Jain (sj2675) - Tester

Introduction

Genesis is a Java-like language that allows for the easy creation of 2D games.

This language utilizes a collision operator to abstract away the logic behind
collision detection so that the programmer can focus on the game mechanics.

It also include a complex data type “cluster” that serves as the fundamental
building block for game design.

Data Types:
Primitive data types (Passed by value)

e int
e float
e char
e boolean
Type Description
int integer
Example: 100
float float
Example: 2.3
char character
Example: ‘a’
boolean Boolean value (true or false)
example: true




Complex data types(Passed by reference)

Type Description
pixel X value, Y value, color
Example:
color R value, G value, B value
cluster 1. Collection of points and/or

previously defined clusters
which form a geometric shape
and it's accompanying color.
2. Includes an anchor point to
reference the shape.

array A container that holds data,
dynamically sized

Language Components:
Control Flow

o if

e elif
e else
e while
e for

Game Specific
e START - creates and displays a gameboard with provided dimensions, pixel
size, and background color.

Indexing

e Indexing starts at @

e Subarrays are indexed by brackets [] with a : separating first and
second indices similar to Python. The first index is inclusive, and the
second index is exclusive. For example array[1:5] includes the element
at index 1 until but not including the element at index 5.

Function
e func returnType funcName(args) { }

Comments
e Comment Symbol: //



Logical Operators

e AND
e OR
e NOT

Comparison Operators

Equals: ==

Not equals: !=

Greater than or equals: >=
Less than or equals: <=
Greater than: >

Less than: <

Math Operators
Multiply: *
Divide: /
Add: +
Subtract: -
Modulo: %

Collision-to-event Operator
e clustl <!> clust2 returns whether clusters clust1l and clust2 are
currently touching (in adjacent pixels) or overlapped

User Input
e keyPressed(KEYNAME) returns whether KEYNAME is pressed
e keyReleased(KEYNAME) returns whether KEYNAME was released since the last
frame

Time & Clock Speed
e Timing is controlled by providing deltaTime, the time that has elapsed
since the last frame was rendered, through the onUpdate function.
e The engine will render frames as quickly as possible (Clock speed is not
defined by the programmer or the language)

Code Example

e In the background grab the screen resolution/dimensions and scale
appropriately

- Initialize dimensions n * m

- Initialize square pixel size x * X

- Initialize background color <r,g,b> (Prim)

- Define timer: paired with seconds on a clock
- User inputs (keys &/or mouse)

- Define shapes/color



//Make new board
START 1280, 960, 1, <255, 255, 255>

//Make new object cluster
cluster lavaWall = new cluster{
x=1080;
y=480;
width=100;
height=800;
color = <255, 0, 0>;
}

float timePressed = 0;



cluster player = new cluster{

//These properties are of type int

X=200;
y=480;
width=100;
height=100;

color = <@, 9, 255>;

// Automatically gets called by engine
onUpdate(float deltaTime) {
if(keyPressed(“right”)) {
timePressed += deltaTime;
if(timePressed > .1){
//Move if the key has been pressed for .1 sec
this.x += 1;
timePressed = 0;
}
} else {
timePressed = 0;

}

//Check for collision
if(this<!>lavaWall){

this.delete();
}

}

//Global update function
onUpdate(float deltaTime)({
if(keyPressed(“esc”)){
wall.delete();
player.delete();



