
GOLD (Game Oriented Language for DnD)
 Language - Project Proposal

COMSW4115

Language Guru: Timothy E. Chung (tec2123)
System Architect: Aidan Rivera (ar3441)

Manager: Zeke Reyna (eer2138)
Tester: Dennis Guzman (drg2156)

1. Introduction and Motivation:
Our team decided that the creation of a game language would be the most enjoyable for all
involved, and that to reasonably do such, a turn-based interactive game on a 2 dimensional
matrix would be doable. Essentially, our language contains common constructs in games that
allow developers to quickly prototype their game’s environment. This way, they can focus on
assembling the business logic of the game rather than worrying about writing a backend that
keeps track of the states of the game like Characters and location of the Characters.

2. Language Overview:

Primitive Data Types

Name Description

int Regular integer that is 64bit

bool Boolean, true/false

string String, “”

amount (ie. 2gold) integer followed by string

typeStruct (ie. Item, Character) Definition with fields and their
types; all our default typeStructs are denoted by
capitalized letter and camel casing like in “Item” and
“Character”

null Null is the uninitiated state

Supported Data Types

Name Description

[] Array of any primitive.

Basic Keywords and default typeStruct (typeStruct is capitalized while actions

start with lowercase)

Name Description

dim(x int,y int) Action: Set the dimension of the world in the game
randomized if not specified.

Item Defines an item (refer to example code for struct fields)

Character Declares a character (refer to example code for struct
fields)

Enemy Declare an enemy (refer to example code for struct
fields)

Barrier Barrier in map (refer to example code for struct fields)

func func defines a function, it can be used with a name like
func helloWorld() or as anonymous func() when used
with let

let let allows user to bind a custom func to a variable name.
i.e. let myFunc = func(arg1 int) {}

Declaration

Name Description

Type() Creates an object of Type that is a typeStruct

Type{(),()} Create an array of Type is a typeStruct

Operators

Name Description

-,+,*,/,-=,+= Operator and shorthand operators for multiplication,
subtraction, addition, and division.

>, <, ==, != Boolean logical operator

= Assignment operator

3. Examples and Sample Program
Our goal is to create a language that allows developers to quickly build a gaming backend and
the game’s business logic using abstractions most games have like Characters and Barriers.
Our language aims to provide a convention and framework to abstract all the recurring logic and
constructs in most common games while leaving space for customization.

let add2health = func(myCharacter typeStruct) {
 if (myCharcter.health < myCharacter.maxHealth - 2) {
 myCharacter.health += 2;
 } else {
 myCharacter.health = myCharcter.maxHealth;
 }

}

let add8health = func(myCharacter typeStruct) {
 if (myCharcter.health < myCharacter.maxHealth - 8) {
 my_character.health += 8;
 } else {
 myCharacter.health = myCharcter.maxHealth;
 }
}

// Program must have dim specified
dim(7, 7); //Back end prevents out of bounds movement, spot declaration

/* Item defined by tuple of name, type, characteristic, x-position,
y-position ...*/
Item("sword", "weapon", add2health, Character, 3, 4);
Item{("green_potion", "potion", add8health, Character, 3, 3),
 ("hummus", "potion", 2, 1, 6)};

/* Char defined by tuple of name, type, location, health, other stats... */
Character("Zekius Penius", "Warrior", 100, 0, 0);
Character{("Aidario", "Mage", 80, 0, 1),
 ("Dennis le Menace", "Rogue", 90, 1, 0)};

/*Barrier defined by tuple of type, starting spot, ending spot CANNOT BE
DIAGONAL*/

Barrier("wall", 4, 6, 7, 6);

/* Enemy defined by tuple of name, boss?, location, health, other stats,
reward */
Enemy{("Goblin", false, 2, 4, 30, 20g),

("Kilgore", true, 5, 6, 200, 2green_potion)};

/* ------------ (Backend definitions: defaults, types, etc.) ----*/

Character {

 name = string;
type = string;

 location = int;
 health = int;
 otherStat = int;
}

Enemy {
 name = string;
 isBoss = bool;
 location = int;
 health = int;
 otherStat = int;
 reward = int // this is the worth of the Enemy when captured
}

Barrier {
type = string;
x1 = int; /* if not specified or default, randomized */
y1 = int;
x2 = int;
y2 = int;
permeability = bool false; // this means default false

}

Item { /*can be held in inventory*/
name = string;
type = string;

 effect = func; // the effect func must accept a typeStruct that is
the same type as target for target will be used as argument
 target = typeStruct;
 x = int;
 y = int;
}

