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1 Introduction
Graph algorithms are relevant in subject areas like economics and chemistry,
and have applications ranging from airline scheduling to linguistic modeling.
Graphs are a fundamental method of representing the world we live in. Graph
creation and algorithms in common programming languages can be tedious to
write.

giraph is a language that focuses on simplifying the construction and manip-
ulation of graphs and performance of graph algorithms. This happens through
an intuitive, readable syntax for graph construction, graph types that allow the
programmer to put more focus on writing algorithms instead of writing excep-
tions, and built-in functions like breadth first search, depth first search, and
tree traversals.

2 Data Types
giraph is a statically typed language, and supports the following:

2.1 Primitive types
• bool - Boolean data, which can be true or false.

• int - Ints are signed 8-byte literals. Represents a number as a sequence
of digits.

• float - Floats are signed double-precision floating point numbers.

2.2 Reference types
• graph - A graph consists of nodes and optionally edges. All nodes in a
graph must have data of the same type. This type is designated when a
new graph is declared with syntax: graph<type> new_graph;
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– graph.add_node(node) - add node

– graph.add_edge(edge - add edge to graph

– graph.remove_node(node) - remove node from graph

– graph.remove_edge(edge) - remove edge from graph

– graph.has_node(fnode) - returns true if graph has node node, false
otherwise

– graph.has_edge(from_node, to_node) - returns true if graph has
an edge from from_node to to_node, false otherwise

– graph.find(data) - returns first node in graph found containing
data

– graph.neighbors(node) - returns graph containing all neighbors of
node as nodes

• edge - An edge connects two nodes within a graph, and can be directed
or undirected, depending on whether it is in a graph or a digraph.

– edge.from() - gives node edge is coming from. In an undirected
graph, edge.from() != edge.to(), except in a self-loop. Beyond that,
there is no guarantee as to which node will be returned by edge.from()

– edge.to() - gives node edge is going to. In an undirected graph,
edge.from() != edge.to(), except in a self-loop. Beyond that, there is
no guarantee as to which node will be returned by edge.to()

• wedge - A weighted edge connects two nodes within a weighted graph and
has an associated numeric weight.

– wedge.from() - gives node wedge is coming from, same guarantees
as edge.from()

– wedge.to() - gives node wedge is going to, same guarantees as
edge.to()

– wedge.weight() - gives weight of wedge

• node - Nodes hold data within a graph. This data can be of any type.
The data type is specified at node creation with syntax: node<type>
new_node;

– node.data() - gives data stored in node

• string - A sequence of ASCII characters. Literals are enclosed in double
quotes, as so: string s = "graphs are cool"
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2.3 Graph subtypes
The following distinct subtypes of graph are supported, with the following hi-
erarchical structure:
• tree - An undirected graph that must be acyclic

– tree.root() - gives root node of tree

– tree.leaves() - gives a graph with all leaves tree and no edges

• digraph - A graph whose edges are all directed

– dag - A digraph that must be acyclic
∗ dag.source() - gives source node of dag

∗ dag.sink() - gives sink node of dag

• wegraph - A graph whose edges are all weighted

– wedigraph - A digraph whose edges are all weighted
∗ wedag - A wedigraph that must be acyclic (aka: a weighted dag)
· wedag.source() - gives source node of wedag

· wedag.sink() - gives sink node of wedag

3 Operators and Expressions
3.1 Variable Assignment
Variables are assigned using the = operator. The left hand side must be an
identifier while the right hand side must be a value or another identifier. The
LHS and RHS must have the same type, as conversions or promotions are not
supported. The variable assignment operator groups right-to-left.

3.2 Node Data Assignment
Nodes are assigned using the : operator. The node assignment operator has
higher precedence than all other graph operators, so node data assignment and
graph assignment can be accomplished in one line. Example, graph and node
declaration and assignment:
digraph<int> g = A:1 -> B:3;

3.3 Arithmetic Operators
Arithmetic operator precedence is as in standard PEMDAS. Operator binding
is as follows:

Additive operators +,− group left-to-right.
Multiplicative operators ∗, \, % group left-to-right.
Parentheses have the highest precedence, and therefore can be used to override
the default operator precedence.
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3.4 Logical and Relational Operators
Relational operators (<, >, <= , >=) and logical operators (&&, ||) also
group left-to-right. So, a statement like a < b && b < c && c < d can simply
be accomplished with a < b < c < d. Expressions with relational and or logi-
cal operators return 0 or 1 for true or false respectively.

Equality operators also group left-to-right, but have lower precedence than re-
lational ones. Logical operators have the lowest precedence of the three.

3.5 Graph Construction
Graph construction uses intuitive notation, establishing nodes and including
edges (denoted by –) between connected nodes. Example, a simple undirected
graph:

graph<int> my_graph = A – B – C – D;

Directed graph construction uses intuitive arrow notation. Right arrows are
left associative and left arrows are right associative. Doubly-directed edges and
undirected edges are left associative. Example, a cyclic digraph:

digraph<int> my_graph = A -> B -> C -> E -> D -> C;

Parentheses can be used to nest declarations. Nodes and edges are still cre-
ated left-to-right. Example, a binary tree with nested declaration:

tree<int> my_graph = A – (B – (D, E), C – (F, G));

Weighted graphs can also be constructed in this way. In this case, the edge
notation is broken up with weights enclosed in square brackets. Example, an
weighted undirected graph:

wegraph<int> my_graph = A -[3]- B -[4]- C -[-5]- D;

Example, a weighted digraph:

wedigraph<int> my_graph = A -[3]-> B <-[4]-> C <-[-5]- D;

In this last example, B and C both have directed edges pointing to each other
with weight 4. If a wedigraph contains two nodes with outgoing edges to one
another with different weights, those edges cannot be denoted using the doubly-
directed edge operator.
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3.6 Graph Operators
Graph operators are overloaded arithmetic operators, to allow for concise graph
manipulation, for example, graph union and graph intersection. In some cases
graph operations can simply be considered set operations. Operators &, |, \
are binary operators that return a copy of the set union, set intersection, set
difference of the original graphs respectively. A graph operator used multiple
times groups left-to-right, although it does not matter. Combining different
graph operators in one statement requires parentheses to specify precedence,
otherwise the implementation is free to evaluate the expression in any order.

3.7 Comments
Comments in giraph will be written as such: !~this is a comment~!. Com-
ments can be single or multi-line.

4 Control Flow
4.1 Conditionals
If-else statements are allowed, in the following formats:

if (condition) {statements}
if (condition) {statements} else {statements}
if (condition) {statements} else if {statements} else {statements}

The else block is optional for any if statement, and any number of else if’s
can be appended to any if statement.

4.2 Loops
C-style while loops and for loops are provided, such as the following:

while (condition) {statements}
for (initialization; condition; update) {statements}

They can either be followed by a single statement to be looped, or by a se-
quence of statements enclosed within brackets. Graph-specific iteration over
nodes and edges is also allowed, using "for each" loops, which take the following
format:

for_node(node : graph) {statements}
for_edge(edge : graph) {statements}

These iterate over all the nodes/edges of graph respectively, executing the
looped statements at every node/edge. For example, the following loop can
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be used to print the data at every node in some graph g:

for_node(n : g) print(n.data())

Each of for_node and for_edge iterate over their respective graph components
in an unspecified order. However, one can also iterate over graph components
in a specific order using the following loop constructions:

bfs(node : graph ; root) {statements}
dfs(node : graph ; root) {statements}

These iterate over the nodes of a graph using breadth-first search and depth-
first search respectively, starting at root and executing the looped statements
at every subsequently reached node. Thus, for some DAG g, one could write
the following to print the data in all nodes in BFS order, starting with the source:

bfs(n : g ; g.source()) print(n.data())

For trees, pre-order, in-order and post-order traversal are also provided:

preorder(node : tree) {statements}
postorder(node : tree) {statements}
inorder(node : tree) {statements}

5 Program Structure
Programs in giraph consist of a sequence of functions, including a main() func-
tion which is the entry point of a compiled executable giraph program. Functions
are defined with the following signatures:

return_type function_name(type arg, type arg, ...) {body}

The main() method has return type void, and the program exits upon its com-
pletion.

6 Standard Library
6.1 Lists
Lists are stored internally as trees where every node has exactly one child,
except the tail of the list which has no children. The following library functions
are provided for list operations, provided that the tree’s list structure is not
tampered with outside of these functions:
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• List.new_list() - returns an empty list

• List.is_empty(list) - returns true if list is empty, otherwise returns
false

• List.add_front(list, item) - adds item at start of list

• List.add(list, item) - adds item at end of list

• List.add(list, index, item) - adds item at index in list

• List.remove(list, index) - remove item at index from list

• List.get(list, index) - gets item at index in list

• List.size(list) - gives number of items in list

• List.append(list1, list2) - All elements of list2 are added, in order,
after all the elements of list1

To iterate over all elements in a list in order, one can do preorder traversal over
the internal tree, as follows:
preorder(node : list) {statements}

6.2 Sets
Sets are stored internally as trees. The following library functions are provided
for set operations, provided that the tree’s structure is not tampered with out-
side of these functions:

• Set.new_set() - returns an empty set

• Set.add(set, item) - add item to set

• Set.add_all(set, graph) - Add all data in nodes in graph to set

• Set.remove(set, item) - remove node with data item from set

• Set.contains(set, item) - returns true if set contains item, or false if
does not

• Set.is_empty(set) - returns true if set is empty, otherwise returns false

• Set.size(set) - gives number of elements in set

• Set.is_subset(set, subset) - returns true if subset is a subset of set

• Set.union(set1, set2) - returns union of set1 and set2

• Set.intersection(set1, set2) - returns intersection of set1 and set2
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6.3 Maps
Maps are stored internally as trees, similarly to sets. The following library
functions are provided for map operations, provided that the map’s structure is
not tampered with outside of these functions:

• Map.new_map() - returns an empty map

• Map.add(map, key, value) - add key/value pair to map

• Map.remove(map, key) - remove key from map

• Map.get(map, key) - returns value in map corresponding to key

• Map.contains(map, key) - returns true if map contains a key-value pair
keyed on key, or false if does not

• Maps.is_empty(map) - returns true if map is emoty, otherwise returns
false

• Maps.merge(map1, map2) - returns a map with all keys from map1 and
map2. When both maps have a key, the key/value pairs of map1 take
precedence. Neither map1 nor map2 are affected by this operation.
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