Strux Language Reference Manual

Josh Bartlett (jcb2254), Fredrick Tam (fkt2105), Sophie Stadler (srs2231), Millie Yang (my2440)

Introduction 9
Lexical Elements 9
 Identifiers 9
 Keywords 9
 Whitespace 9
 Comments 10
Operators and Expressions 10
 Assignment Operator 10
 Arithmetic Operators 11
 Comparison Operators 11
 Logical Operators 12
 String Concatenation 12
 Operator Precedence 12
 Order of Evaluation 13
Statements 13
 Expression Statements 13
 Declaration Statements 13
 Control Flow Statements 13
 Loops 13
 For Loops 14
 Enhanced For (forEach) Loops 14
While Loops 15
Conditionals 15
Break, Continue 16

Data Types 16
Primitives 16
 num 16
 string 16
 bool 16
Built-In Data Structures 16
Stack 16
 Initializing an instance of a Stack 17
Library Functions 17
 Peek 17
 Pop 17
 Push 18
 isEmpty 18
 Size 18
Queue 19
 Initializing an instance of a Queue 19
Library Functions 19
 Peek 19
 Enqueue 20
 Dequeue 20
 isEmpty 20
 Size 21
LinkedList 21
 Initializing an instance of a LinkedList 21
Library Functions
 Add 21
 Remove 22
 Check Empty 22
 Get Size 22
Array 22
 Array Declaration 22
 Library Functions 24
 Length 24
 Find 24
 QuickSort 24
BSTree 26
 BSTree Declaration 26
 Library Functions 27
 Add 27
 Remove 27
 Contains 28
Functions 28
 Built-In 28
 main() 28
 show() 28
 User-Defined 30
Style Guide 31
Introduction

Lexical Elements

Identifiers
An identifier is a unique sequence of characters that are used to identify variables and functions. Identifiers can contain letters, numbers, and the underscore character. Additionally, identifiers are case-sensitive. A valid identifier adheres to the following rules:

1. At least 1 character long
2. Begins with a letter
3. Isn’t equal to one of the reserved keywords

Keywords
Keywords are reserved words that each have some unique meaning when compiling. Keywords can not be used as identifiers or reassigned.

<table>
<thead>
<tr>
<th>num</th>
<th>string</th>
<th>bool</th>
<th>for</th>
</tr>
</thead>
<tbody>
<tr>
<td>while</td>
<td>in</td>
<td>break</td>
<td>continue</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>void</td>
<td>if</td>
</tr>
<tr>
<td>elif</td>
<td>else</td>
<td>LinkedList</td>
<td>ListNode</td>
</tr>
<tr>
<td>Stack</td>
<td>Queue</td>
<td>Array</td>
<td>return</td>
</tr>
<tr>
<td>and</td>
<td>or</td>
<td>forEach</td>
<td>main</td>
</tr>
<tr>
<td>show</td>
<td>TreeNode</td>
<td>null</td>
<td>BSTree</td>
</tr>
<tr>
<td>not</td>
<td>new</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Whitespace
Whitespace is largely ignored in Strux. Other than within string literals, whitespace is only used to separate different tokens. Therefore, these two statements are actually produce the same result after being compiled:
num addTwo(num a, num b) {
 return a + b;
}

num addTwo (num a ,num b) { return a+ b;}

A space is required after:

- The `return` keyword, before the value that is returned (if any).
- The `new` keyword, after an instance of an object is initialized.
- The return type of a variable when defined in an expression.
- The return type of a function in a function signature.

Do not put a space between:

- The type of values in an array and the brackets ([]) used to instantiate it

 - Example: num[] arr = {1, 2, 3, 4};

Comments

Anything in a comment will be completely ignored by the compiler. Strux does not have a special syntax for single-line comments, all comments are contained within `:(and):`.

`: (This is a comment):`

Operators and Expressions

Assignment Operator:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Type</th>
<th>Associativity</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>Assignment</td>
<td>Right -> Left</td>
</tr>
</tbody>
</table>
Strux uses the standard assignment operator (=), to store the value of the right operand to the variable of the left operand of the same type. The left operand cannot be a literal (string or num literal) value and variables on the left cannot be named starting with numbers.

Example:

```
num myAge = 21; ✓
num "myAge" = 21; □
string myName = "Kennedy"; ✓
bool 1true = true; □
```

Arithmetic Operators:

Assuming num x = 100 and num y = 20

<table>
<thead>
<tr>
<th>Operator</th>
<th>Type</th>
<th>Associativity</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Addition</td>
<td>Left -> Right</td>
<td>x + y = 120</td>
</tr>
<tr>
<td>-</td>
<td>Subtraction</td>
<td>Left -> Right</td>
<td>x - y = 80</td>
</tr>
<tr>
<td>*</td>
<td>Multiplication</td>
<td>Left -> Right</td>
<td>x * y = 2000</td>
</tr>
<tr>
<td>/</td>
<td>Division</td>
<td>Left -> Right</td>
<td>x / y = 50</td>
</tr>
<tr>
<td>%</td>
<td>Modulo</td>
<td>Left -> Right</td>
<td>x % y = 0</td>
</tr>
</tbody>
</table>

Comparison Operators:

Assuming num x = 50 and num y = 20

<table>
<thead>
<tr>
<th>Operator</th>
<th>Type</th>
<th>Associativity</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>==</td>
<td>Equal To</td>
<td>Left -> Right</td>
<td>(x == y) returns false</td>
</tr>
<tr>
<td>!=</td>
<td>Not Equal To</td>
<td>Left -> Right</td>
<td>(x != y) returns true</td>
</tr>
<tr>
<td>></td>
<td>Greater Than</td>
<td>Left -> Right</td>
<td>(x > y) returns true</td>
</tr>
<tr>
<td>>=</td>
<td>Greater Than Or Equal To</td>
<td>Left -> Right</td>
<td>(x >= y) returns true</td>
</tr>
<tr>
<td><</td>
<td>Less Than</td>
<td>Left -> Right</td>
<td>(x < y) returns false</td>
</tr>
<tr>
<td><=</td>
<td>Less Than or Equal To</td>
<td>Left -> Right</td>
<td>(x <= y) returns false</td>
</tr>
</tbody>
</table>
Logical Operators:

Assuming `bool x = true and bool y = false`

<table>
<thead>
<tr>
<th>Operator</th>
<th>Type</th>
<th>Associativity</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>Logical AND</td>
<td>Left -> Right</td>
<td><code>(x and y) returns false</code></td>
</tr>
<tr>
<td>or</td>
<td>Logical OR</td>
<td>Left -> Right</td>
<td><code>(x or y) returns true</code></td>
</tr>
<tr>
<td>not</td>
<td>Logical NOT</td>
<td>Right -> Left</td>
<td><code>not x returns false</code></td>
</tr>
</tbody>
</table>

String Concatenation:

Strings can be concatenated with the use of the + operator to create a new string value, and both left and right operands must be of strings as well.

```c
string word = "Strux";
string sentence = word + " is awesome!";
:( sentence equal to "Strux is awesome!" ):
```

Operator Precedence:

Expressions can have multiple operators, for example `(x - y) * (x % y)`. In these situations, operators are executed based on their level of precedence. List below arranges operators in order of precedence; from highest precedence to lowest.

1. Multiplication and Division expressions
2. Addition and Subtraction expressions
3. Greater Than, Less Than, Greater Than or Equal, and Less Than or Equal To expressions
4. Equal To and Not Equal To expressions
5. Logical NOT expressions
6. Logical AND expressions
7. Logical OR expressions
8. Assignment expressions
Order of Evaluation:

If we have a complex expression, it will be evaluated by starting with the leftmost subexpression. For example, in:

\[
((C() \% D()) \ast (E() + Z()))
\]

where C, D, E and Z are functions, C() will be called first, followed by D(), E() and Z(). Operator precedence will be ignored in this case.

Statements

Expression Statements

An expression statement is one that can be executed by Strux. Expressions are terminated with a semicolon, and include method invocations, value assignments, and creation of data structures. Some examples:

```java
LinkedList myList = new LinkedList();
show(myList.isEmpty());
string greeting = "hello world";
```

Declaration Statements

Declaration statements are used to declare a new variable. They are comprised of its type, its name, and, optionally, its value. A value is assigned with the equals operator (=). One can declare multiple variables of the same type in one declaration. Declaration statements are terminated with a semicolon.

```java
num five = 5;
num wordCount;
string missionStatement = "Strux rocks!";
bool isTired, isHungry, isThirsty;
```

Control Flow Statements

Control flow statements disrupt the linear evaluation of code. Conditionals, loops, and keywords are used by Strux to introduce specific flow.
Loops

Loops are used to execute a section of code multiple times. Strux includes three types of loops: for loops, enhanced for loops, and while loops.

For Loops

For loops are used to execute a block of code until a condition is satisfied. The format is as such:

```java
for (initialization; termination; increment/decrement) {
    : (Code goes here):
}
```

The termination expression above must evaluate to a boolean. When the loop is entered, the initialization is called and checked against the termination condition. Then, the code inside the loop is executed and the initialization value incremented on each iteration. The loop finishes when the termination expression returns false.

An example:

```java
for (num i = 1; i <= 10; i++) {
    show(i);
    : (Prints the numbers 1-10):
}
```

Enhanced For (forEach) Loops

Enhanced for loops are used to iterate over items in a data structure, including arrays, linked lists, stacks, and queues. They are useful because they eliminate the need for a counter and terminator as in a standard for loop, and instead provide direct access to the structure's data. The syntax follows this pattern:

```java
forEach item in iterable {
    : (execute this code):
}
```

An example:
forEach node in myLinkedList {
 show(node); // Prints all nodes in a LinkedList:
}

While Loops

While loops are used to iterate over a block of code until a condition is being evaluated as false. The syntax is such:

while (expression) {
 // execute this code:
}

The expression above must evaluate to a boolean value. The code contained within the braces will execute until the expression returns false. An example:

```java
num i = 1;
while (i <= 10) {
    show(i);  // Prints the numbers 1-10:
}
```

Conditionals

Strux uses if-else and if-elif-else expressions to introduce conditional evaluation. In each of these statements, code within the required braces ({{}}) will evaluate only if the given expression is true. Conditional statements must be enclosed in parentheses. Below, an if-else statement:

```java
bool october = true;
if (october == true) {
    show("It's October!");
} else {
    show("It isn't October.");
}
```

An if-elif-else statement presents the opportunity to introduce more (infinite, in fact) conditional statements.
num temp = 65;
if (temp > 80) {
 show("It's hot!");
} else if (temp < 45) {
 show("It's cold!");
} else if (temp < 10) {
 show("It's freezing!");
} else {
 show("It's nice out.");
}

Break, Continue
The `break` keyword stops iterating code immediately and exits the looping condition. Using `break` outside of a loop will throw an error.

The `continue` keyword skips the present iteration of a looping condition, and enters the next iteration. Using `continue` outside of a loop will throw an error.

Data Types
Strux is a typed language. Type must be specified when a variable is declared, and is immutable.

Primitives

num
Strux represents all digits, whether integers or decimal values, using `num`. A `num` is a 64-bit value.

string
A `string` is a sequence of ASCII characters enclosed by double quotes ("."). Calling `.length` on a string returns the number of characters in the string. Characters in a string can be accessed much like array elements, with `str[0]` returning the first character in string `str` as a `string`.

bool
A variable of type `bool` represents the logical value `true` or `false`.
Built-In Data Structures

Stack
Stack is a data structure that represents LIFO (Last-in–first-out) operations on stack of objects.

Initializing an instance of a Stack
Stacks can be initialized using one of two constructors. The type is specified after two colons (::); this pattern is adopted by Queues and LinkedLists as well.

```
Stack::type emptyStack = new Stack();
```

The second initializes a stack filled with the values of an array. This array must be composed of num or string values, but not both.

```
Stack::num stack = new Stack({1, 2, 3});
```

Library Functions
There are several builtin functions for manipulating a stack.

Peek
To look at the top element of the stack, use peek(). This method retrieves, but does not remove the top of the element in the stack. If the stack is empty, this function returns null.

```
stack.peek(); // ( returns 1 ):
stack.peek(); // ( returns 2 ):
stack.peek(); // ( returns 3 ):
stack.peek(); // ( returns null ):
```

Pop
To look at the top element of the stack and remove it from the stack, use pop(). This function retrieves value of top most element of stack and removes it from stack. If the stack is empty, this method returns null.
Stack::num stack = new Stack({1, 2, 3});

stack.pop(); : (returns 1);
stack.pop(); : (returns 2);
stack.pop(); : (returns 3);
stack.pop(); : (returns null);

Push
To add items to the top of the stack, use `push(num or string)`.
A new element is created and added to the top of the stack.
This new element has value that was passed in as the parameter.
Method does not return anything.

stack.push(5);

isEmpty
To check whether there are any elements left in our stack, we call `isEmpty()`.
Method returns true when stack is empty, and false when stack is not.

Stack::num stack = new Stack({1, 2, 3});
stack.isEmpty(); : (returns false);
Stack::num stackTwo = new Stack();
stackTwo.isEmpty(); : (returns true);

Size
Calling `size()` returns the number of elements in the stack.
Stack::num stack = new Stack();

stack.size(); : (returns 0);

Stack::num stackTwo = new Stack({1, 2, 3});

stack.size(); : (returns 3);

Queue

Queue is a data structure that represents FIFO (first-in-first-out) operations on a list of objects.

Initializing an instance of a Queue

Queues can be initialized using one of two constructors.

Queue::num emptyQueue = new Queue();

The second initializes a queue filled with the values of an array. This array must be composed of num or string values, but not both.

Queue::num queue = new Queue({1, 2, 3});

Library Functions

There are several builtin functions for manipulating a queue.

Peek

To look at the head of the queue, use peek(). This function retrieves, but does not remove the element in the head of the queue. If queue is empty, this function returns null.
Queue::num queue = new Queue({1, 2, 3});
queue.peek(); \(\implies\) returns 1;
queue.peek(); \(\implies\) returns 1;

Enqueue
To add items to the tail of the queue, use `enqueue(num or string)`. A new element is created and added to the tail of the queue. This new element contains value that was passed into the parameter. Function does not return anything.

Queue::num queue = new Queue({1, 2, 3});
queue.enqueue(4);

At this moment, the queue contains 4 elements: 1,2,3,4. 1 is the head of the queue, and 4 is the tail of the queue.

Dequeue
To remove items from the head of the queue, use `dequeue()`. This function looks at the head of the queue. If the queue is empty, function returns null. Otherwise, function returns the value of the head of the queue.

Queue::num queue = new Queue({1, 2, 3});
queue.dequeue();

At this moment, the queue contains 2 elements: 2,3. Element with value 1 was removed from the queue since it was the head of the queue.

isEmpty
To check whether there are any elements left in our queue, we call `isEmpty()`. Function returns true when queue is empty, and false when queue is not.
Queue::num stack = new Queue({1, 2, 3});
queue.isEmpty(); :(returns false):
Queue::num queueTwo = new Queue();
queueTwo.isEmpty(); :(returns true):

Size
Calling size() returns the number of elements in the queue.

Queue::num queue = new Queue();
queue.size(); :(returns 0):
Stack::num queueTwo = new Queue({1, 2, 3});
queueTwo.size(); :(returns 3):

LinkedList
A LinkedList is comprised of ListNode objects, which contain data (either a num or string), and a reference to the next ListNode.

Initializing an instance of a LinkedList
Linked lists can be initialized using one of two constructors. The first produces an empty LinkedList object:

LinkedList::type emptyList = new LinkedList();

The second initializes a LinkedList filled with the values of an array. This array must be composed of num or string values, but not both.

LinkedList::num numList = new LinkedList({1, 2, 3, 4});

Library Functions
There are several buildin functions for manipulating a Linked List.
Add
To append items to the tail of the Linked List, use .add(num or string). A node is created from the value passed into add, and is appended to the end of the list. Returns true if the item is appended successfully.

```
numList.add(5);  : ( returns true ):
emptyList.add("not empty anymore");  : ( returns true ):
```

Remove
To remove an item from the list, call .remove(num or string). The first node containing this value is removed. If there are multiple nodes with this value, all but the first remain. Returns true if this list contained the specified element, false otherwise.

```
numList.remove(3);  : ( returns true ): 
```

Check Empty
To check if a list is empty, call .isEmpty(). This function returns true if the list contains 0 nodes, and false if it has 1 or more.

```
numList.isEmpty();  : ( returns false ):
```

Get Size
Calling .size() returns the number of elements in the list.

```
numList.size();  : ( returns 4 ):
```

Array
An array is a container object that holds a fixed number of values of a single type. The length of an array is established when the array is created. After creation, its length is fixed.

Array Declaration
Array declarations are made by specifying the type and name of the array. The naming conventions for the array are consistent with Strux’s variable naming
conventions. Array types are shown before the brackets during declaration. For example:

```java
num[] myArray;
```

Initializing an Array
Array sizes are indicated at time of array creation and should be specified for the array to be created. Once created, array sizes are immutable. You can create an array by using the new operator. The example below illustrates the creation of arrays in Strux.

```java
num[] intArray = new num[5]; ✓: (creates integer array of size 5);
string[] name = new string[8]; ✓: (creates string array of size 8);
num[] numArray = new num[]; ❌: (creates empty integer array);
```

If we know the elements we want to put into an array, we can create one using this alternative syntax, without specifying the size of the array.

```java
string[] struxers = {"Josh", "Sophie", "Millie", "Fred"};
um[] ages = {21, 20, 19, 20};
```

Accessing an Array
Array elements are accessed by their numerical index.

```java
num[] numArray = {2, 4, 6, 8, 10};
show(numArray[2]); ❌: (prints out 6);
```

Array values can also be assigned/modified by doing the following:
num[] numArray = {2, 4, 6, 8, 10};
numArray[1] = 3;
show(numArray); :(prints out [2, 3, 6, 8, 10]);

Library Functions
There are a few built-in functions for manipulating arrays

Length
To find the number of items in an array, use the .length method.

num[] numArray = {2, 4, 6, 8, 10};
show(numArray.length); :(prints out 5);

Find
The .find(x) function returns the smallest index i, where i is the first occurrence of element x in an array. This function returns -1 if element does not exist in array.

num[] numArray = {2, 4, 6, 8, 8, 22, 10, 30};
show(numArray.find(8)); :(prints out 3);
show(numArray.find(11)); :(prints out -1);

QuickSort
QuickSort is sorting algorithm we use to sort arrays in strux. QuickSort is a Divide and Conquer algorithm. We first consider the first, last, and middle element of the array. Between these three elements, we will pick the pivot, which is the median of the three. To sort an array using quicksort, call the function .quickSort(). To visualize quicksort, call the function .showQuickSort(). An example is shown below:
(using .quickSort):
num[] arr = {10, 100, 30, 90, 40, 50, 70};
arr.quickSort(); : (calls quicksort on array):
:(prints out sorted arr: [10, 30, 40, 50, 70, 90, 100]):

:(using .showQuickSort):
num[] arr = {10, 100, 30, 90, 40, 50, 70};
:(shows this: low = 0, high = 6, pivot = median(10,90,70) = arr[high] = 70):
Initialize index of smaller element, i = -1

:(Traverse elements from j = low to high-1
j = 0 : Since arr[j] <= pivot, do i++ and swap(arr[i], myArray[j]
i = 0
j = 1 : Since arr[j] > pivot, do nothing

):(prints out step 1: [10, 100, 30, 90, 40, 50, 70]):

:(j = 2 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])
i = 1):

):(prints out step 2: [10, 30, 100, 90, 40, 50, 70] // We swap 100 and 30):

):(j = 3 : Since arr[j] > pivot, do nothing
// No change in i and arr[]):

):(prints out step 3: [10, 30, 100, 90, 40, 50, 70]):

:(j = 4 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])
i = 2):

):(prints out step 4: [10, 30, 40, 90, 100, 50, 70] //100 and 40 Swapped):

):(j = 5 : Since arr[j] <= pivot, do i++ and swap arr[i] with arr[j]
i = 3):

):(prints out step 5: [10, 30, 40, 50, 100, 90, 70] // 90 and 50 Swapped):
BSTree

A tree is a data structure comprised of BSTreeNode objects, each of which has references to its children. In Strux, the tree is a binary search tree, meaning that it adheres to the following rules:

1. Each node has at most two children
2. All children in the left subtree of a node are less than the value of the parent node
3. All children in the right subtree of a node is greater than or equal to value of the parent node
4. BSTree only supports nums

BSTree Declaration

Initializing a binary search tree in Strux is as easy as:

```java
BSTree tree = new BSTree(); // Creates new empty tree
```

Additionally, a new binary search tree can be created with the following syntax:

```java
BSTree tree = new BSTree((5,2,6,2,9));
```

This syntax is equivalent to creating a new, empty tree and then calling add to the tree on each of the numbers in the array. Therefore, it is equivalent to:
```
BSTree tree = new BSTree();
tree.add(5);
tree.add(2);
tree.add(6);
tree.add(2);
tree.add(9);
```

Library Functions

Add

Add a new element to the tree. Because this is a binary search tree, the element is added is added according to its value. If the value is less than the root, the value is then compared to the left child of the root, and if the value is greater than or equal to the root, the value is compared to the right child of the root. This process is done recursively until the child that must be compared is null, at which point, a new TreeNode is created with the value to be added, and the TreeNode is added to the tree. A boolean is returned indicating whether or not the add was successful.

```
BSTree tree = new BSTree();
  :( tree is empty ):
  tree.add(5);
  :( tree now has 5 ):
  tree.add(6);
  :( tree now has 5 and 6 ):
```

Remove

Removes the first instance of a specified value from the tree. When the element is removed, its children and parent are updated to reflect the change while still maintaining the binary search tree properties. The function returns true if the element was successfully deleted, or false if the value wasn’t found inside the tree.
BSTree tree = new BSTree();

 tree.add(5);
 tree.add(6);
 tree.remove(6); // : (tree now only has 5):
 tree.remove(1); // : (returns false, tree unchanged):

Contains
Used to check if a certain value can be found within a tree. Simply returns true if the value is in the tree or false if it isn’t.

BSTree tree = new BSTree();

 tree.add(5);
 tree.add(6);

 tree.contains(5); // : (returns true):
 tree.contains(2); // : (returns false):

Functions

Built-In

main()
A main() function is required for every program to run. The program will not execute without a main method. The main method looks like this

 void main() {
 show("Hello World!");
 }

The main method does not return anything. Note that in this main method we have introduced another built-in function, called show().
show()

takes in a data structure in its parameter and visualizes it. In the next examples, we will illustrate how show is used for our different data structures/types.

String:

```
show("Hello World!");
```

Will print this to the console:

"Hello World!"

Num:

```
num x = 3;
show(x);
```

Will print this to the console:

3

Array:

```
show({0, 1, 2, 3, 4, 5});
```

Will print this to the console:

[0, 1, 2, 3, 4, 5]

LinkedList:

```
show(new LinkedList::num({0, 1, 2, 3, 4, 5}));
```

Will print this to the console:

```
Head +----+ +----+ +----+ +----+ +----+ +-------+
| 0 |-> | 1 |-> | 2 |-> | 3 |-> | 4 |-> | 5 |-> | null |
Tail +----+ +----+ +----+ +----+ +----+ +-------+
```
Stack:

```
show(new Stack::num({1,2,3}));
```

Will print this to the console:

```
+----+
| 3  | <- Top
+----+
| 2   |
+----+
| 1   |
+----+
```

Queue:

```
show(new Queue<num>({4,5,6,1}));
```

```
Head   Tail
+-------+-------+
| 4 | 5 | 6 | 1 |
+-------+-------+
```

BSTree:

```
BSTree tree = new BSTree({5,6,4,9,5,2});
show(tree);
```

Will print this to the console:

```
 .-----(4)-----(6)-----(5)-----(9)
 (2)               (5)
```
User-Defined

User-defined methods contain return types that are determined when writing the method signature, for example:

```java
boolean isTrue() {
    return true;
}
```

returns boolean variable true. The return type is determined to be boolean, and the method signature is `isTrue()`. Note that if this method is defined to be

```java
num isTrue() {
    return true;
}
```

This does not work.

Style Guide

The following statements are only suggestions for helping keep your Strux code clean and readable:

1. Use camelCase on variable and function names
 a. `addTwoNumbers()`
 b. `medianValue`
2. Use 4 spaces instead of the tab character. This ensures uniformity across all devices and text editors.