
 
Craft - Language Reference Manual 

 
Daniel Tal (dt2479) [Manager]  

Martin Fagerhus (mf2967) [Language Guru]  
Abhijeet Mehrotra (am4586) [System Architect]  

Roy Prigat (rp2719) [Tester] 
 

1. Lexical elements 
 

a. Identifiers 
 

 An identifier, or name, is a sequence of letters, digits, and underscores (_). The 
first character cannot be a digit. Uppercase and lowercase letters are distinct 
(case-sensitive). Name length is unlimited. The terms identifier and name are used 
interchangeably. 

 
b. Reserved Keywords and Symbols 

 

element int color key_up 

world float !! key_down 

event bool  key_id 

start pair  events 

reset if new pos 

def else delete this 

return while speed  

conditio

n 

action angle bounce 

health lives directio

n 

import 

 
 
 
 
 



 
 
 

c. Constants (as per C LRM) 
 

i. Integer Constants 
1. A sequence of digits is assumed to be a base 10 decimal number. 
2. Digits 0 to 9 can be used 
3. Ex. 654 

ii. Real Number Constants 
1. These are used to represent fractional (floating point) numbers. 
2. Represented by a sequence of digits which represent the integer, 

a decimal point, and a sequence of digits to represent the 
fractional part. 

3. Ex. 5.7 
iii. String Constants 

1. A string constant is a sequence of zero or more characters, digits, 
and escape characters. 

2. Ex. “I am a string” 
3. Ex. “\”I am a string with quotation marks\”” 

 
d. Operators 

 

+, - add, subtract 

*, /, % multiplication, division, modulo 

= assignment  

>, >=, <, <=  inequality operators  

==, != equal to, not equal to 

&&, ||, ! not, and, or 

. access 

 
 
 
 
 
 
 
 



 
e. Delimiters 

 
i. Parentheses: Used to show precedence in operational and expression 

evaluation, to enclose parameters within function calls, and as 
inseparable parts of our pair types. 

ii. Commas: Used to separate arguments in function calls and to separate 
values in pair data types. 

iii. Semicolon: Used to end statements. 
iv. Curly Brackets: Used to mark the start and end scope of functions, 

loops, conditionals, and world definitions. 
 

f. Whitespace 
i. Only used to separate specific words/tokens. 

  
g. Comments 

i. Only one line comments allowed using “#” (hashtag symbol). 
 
 

2. Data types 
 

a. Primitive Data Types 
i. Integer Types 

1. Numbers of Integer type will be declared int 
2. Syntax: int <name> = <integer number>; 
3. Ex: int a = 123; 

ii. Floating Point Types 
1. Fractional numbers will be declared as float 
2. Syntax: float <name> = <fractional number>; 
3. Ex: float a = 5.7; 

iii. Boolean Types 
1. Boolean values will be declared as bool 
2. A boolean value can be either true or false 
3. Syntax: bool <name> = <boolean value>; 
4. Ex: bool alive = false; 

 
 

b. Non-primitive Data Types 
i. Pair Types 

1. pair is defined by two integer values, separated by a comma, and 
enclosed by parentheses. 

2. Anything except natural numbers (nonnegative) will be rejected as 
well as any pair values that exceed the game grid size. 



3. Syntax: pair <name> = (int,int); 
4. Ex: pair object = (100,100); 
5. Operations on Pair Types 

a. Addition 
i. Syntax: pair <name> = <pair type> + <pair type>; 
ii. Ex:  

pair  pair_1  =  (10,10); 
pair  pair_2  =  (20,20); 
pair  new_pair  =  pair_1  + 
pair_2; 

#  new_pair  ==  (30,30) 

 
b. Subtraction 

i. Syntax: pair <name> = <pair type> - <pair type>; 
ii. Ex:  

pair  pair_1  =  (10,10); 
pair  pair_2  =  (20,20); 
pair  new_pair  =  pair_2  - 
pair_1; 

#  new_pair  ==  (10,10) 

 
c. Multiplication 

i. Syntax: pair <name> = <pair type> * <pair type>; 
ii. Ex:  

pair  pair_1  =  (10,10); 
pair  pair_2  =  (20,20); 
pair  new_pair  =  pair_2  * 
pair_1; 

#  new_pair  ==  (200,200) 

 
d. Division 

i. Syntax: pair <name> = <pair type> / <pair type>; 
ii. Ex:  

pair  pair_1  =  (10,10); 
pair  pair_2  =  (20,20); 
pair  new_pair  =  pair_2  / 
pair_1; 

#  new_pair  ==  (2,2) 

 
e. For operations it is only allowed to calculate results which 

are natural numbers. 
 



 
ii. Element Types 

1. element is an object which is a part of the game's world.  
a. Rectangular shape 
b. Required attributes 

size, direction, speed, color, position(can also be passed 
as an argument at the time of object creation). 

c. Additional attributes are optional 
d. Size is described by a tuple, (x,y), supporting rectangular 

shapes 
e. Direction is the direction of the element  

i. Direction can be any number of degrees. 
ii. Initial support will be for 0, 90, 180, 270 degrees 
iii. Placement of the element on the grid will be bound 

to position of the element and it will rotate 
accordingly based on direction.  

iv. Examples below. The block, size==(1,2), is 
attached at position==(2,2) in a 4x4 world. The 
element is is placed at position (2,2) and situated 
on the grid based on direction.  

v.  

vi. 0 degrees 

vii. 90 degrees 

viii. 180 degrees 

ix. 270 degrees 
 



 
2. Syntax: 

element  <name>  { 
size  =  (x,y) 
direction  =  <int>; 
color  =  <hex>; 
speed  =  <int>; 

} 

3. Example: 
a.  

element  square_block  { 
size  =  (2,2); 
direction  =  0; 
color  =  ffffff;    #  Black 
speed  =  0; 

} 

 

#This  will  create  a  black  square  block 
#size  2x2  (4  pixels) 
#direction  ==  0,  pointing  at  0  degrees 
#speed  ==  0,  element  not  moving  

 
 

3. Functions 
a. Built-in functions: 

 

Syntax Description 

delete(element) Removes element from the world 

restart() Call the destructor (deletes/frees all 
memory and resets the world) 

add_event(event

) 

The function adds the event passed into 
the parameter to the global event loop 
that runs in the global loop at every 
clock tick. 

 
 
 
 
 
 



b. User-defined functions 
i. Defining a function: 

def  function_name(args)  { 
return 

return_element; 

} 

 
ii. Calling a function:  

function_name(args); 

 
 

4. Event blocks 
a. Define events in the game with event 
b. Syntax: 

 

event  (<element>)  { 
condition  { 

<some  condition> 
}  action  { 

<some  action  that  will  happen  if 
condition  ==  true> 
} 

 
c. Example: 

 

event  die(player  p)  { 
condition  { 

p.health  ==  0; 
}  action  { 

p.lives  =  p.lives  -  1; 
world.reset(); 

} 

 
 
 
 
 
 
 
 



 
 

5. Control Flow Statements 
a. Conditional statements 

i. if/else statement: 
 
 

if  (<condition>) 
{  

    <statements>; 
} 

else  { 
    <statements>; 
} 

 
 

b. While loops 
 

while(<condition>)  { 
    <statements>; 
} 

 
 

6. Program Structure and Scope 
 
In order to run a program, the program file must contain a main ‘world’ function. Standard 
files/libraries can be imported using ‘import’. The world function is the starting point of execution. 
 
Each function/event/element within the file must be enclosed by curly brackets to determine its 
scope. It can be created/defined in the main file before the ‘world’ function and then called within 
‘world’ in order to implement/use the function/event/element within the game world. 
 
Furthermore any new instance of an element defined within the world function, is automatically 
added to the game world.  
 
 
 
 
 
 
 



 
 

7. Sample Program 
 
event  die(player  p)  { 

condition  { 
p.health  ==  0; 

}  action  { 
p.lives  =  p.lives  -  1; 
world.reset(); 

} 

 

event  win(player  p,  treasure  t)  { 
condition  { 

p  !!  t;   #  collision 
}  action  { 

world.end(); 

} 

} 

 

event  moveUp(player  p)  { 
condition  { 

key_down(upArrow); 

}  action  { 
p.direction  =  90; 

} 

 

event  moveDown(player  p)  { 
condition  { 

key_down(downArrow); 

}  action  { 
p.direction  =  270; 

} 

 

element  wall  { 
     size  =  (2,1); 
     direction  =  0; 
     color  =  ffffff;    #  Black 
     speed  =  0; 
} 

 

 

 



 

 

 

element  player  { 
size  =  (1,1); 
direction  =  0; 
color  =  f2333f;   #  Blue 
health  =  100; 
lives  =  3; 
speed  =  1; 

} 

 

element  treasure  { 
size  =  (1,1); 
speed  =  0; 
direction  =  90; 
color  =  00ffff;  #  Yellow 

} 

 

world()  { 
size  =  (100,100); 
player  p1  =  new  player((0,0)); 
treasure  t  =  new  treasure((9,9)); 
wall  w1=  new  wall(2,3); 

 

     #  add  events  to  the  game  events  loop,  and  bind  them  to  specific 
     #  elements 
 

add_event(win(p,t)); 

add_event(die(p)); 

add_event(moveUp(p)) 

add_event(moveDown(p)); 

 

} 

}  


