PieNum Language
Reference Manual

October 2017

i

Y

A — O 7" NV W O LW N0 3 S
== \||<—:N»‘—~N»—koo—u,)—'-vm

DO RWNOLAIOAE DO —Oec D |
(. N)
O = Q0™ T) HE NOJ) NO0 R0 B0~ L)

i
g
i
0
|
d
5
6
7
8
3
4
5
e

Hadiah Venner (hkv2001)
Hana Fusman (hbf2113)
Ogochukwu Nwodoh (ocn2000)

Introduction

1.

2.

Index

Lexical Convention

1.1.
1.2

1.3.
1.4.

Data Types

Comments

Identifiers

Keywords

Literals

2.1.
2.1.
2.1
2.1.
2.1.
2.1.
2.2
Operators
3.1.
3.1.
3.1.
3.1.
3.1
3.1
3.1.
3.2

Primitive Tvpes

1.
L2,
3.
4.
5.

Integer

Boolean
Float

String
Void

Non-Primitive Tvpes

2.2.1.

Arrays

Operators for Primitive Tvpes

1.

2
3
4.
5
6

Assignment Operator

Arithmetic Operations

Precedence of Arithmetic Operators

Relational Operators

Equality Operators

Logical Operators

Array Operations

3.2.1.
3.2.2.
3.2.3.
3.2.4.

Addition

Multiplication

Subtraction

Cross Product

4.

3.2.5. Inversing

3.2.6. Return the TLength of the Array

Statements

4.1. Expression Statements

4.2. if Statement

4.3. while Statement
4.4. for Loops

4.5, return Statement

Methods

5.1. Method Basics

5.2. Main Method

Scope
6.1. Local Variables

6.2. Global Variables
File T/0

7.1. Reading in a File

7.2. OQutput Image File

Sample Program (For DEMO)

8.1. Image Rotation

8. Image Resizing
8.3. Image Contrast
8.4. Image Morphing
8.5. Image Convolution

Introduction

Our motivation for our language is to use some elements from the
NumPy library in the Python programming language to make image
processing more accessible. NumPy adds support for large,
multidimensional arrays and matrices, along with a large
collection of high-level mathematical functions to operate on
these arrays. We want to create a static language that has some
of the array manipulation power of NumPy. This would then allow
us to write programs that involve manipulating arrays and
matrices and doing complex mathematical calculations on them.
Our vision 1is to create a function based language that will
include built in functions for image processing, while also

allowing the user to create his or her own functions.

1. Lexical Conventions

1.1 Comments

Comments begin with a # symbol and end with a # symbol.
This convention should be used for both single line and
multiline comments.

1.2 Identifiers

Identifiers are entities in our language such as variables,
methods and data types. Valid identifier in PieNum are
characters include ASCII letters and decimal digits. The
first character of an identifier cannot be a digit.
Identifiers cannot be the same sequence of characters as
keywords.

1.3 Keywords

The following identifiers are reserved and cannot be used
otherwise. They are case sensitive:

int return

float boolean

if while
array print
else for
void string
true false
null main
rotate matrix global

1.4 Literals
PieNum literals can be integers , booleans, floats, and
strings.

2. Data Types

2.1 Primitive Types

2.1.1 Integers

Int

An integer is a whole value between -2°' and 2°' - 1. The
default value is 0.

2.1.2 Boolean

Boolean

A single byte that can have the value true or false. The
default value is false.

2.1.3 Float

float

A float is an integer followed a decimal part (some
fractional value). The default wvalue is 0.0.

2.1.4 String

String

Strings are a sequence of zero or more ASCII characters,
numbers, or spaces. Strings in PieNum must be enclosed in
double quotation marks. The default value is the empty
string is null. In PieNum, a single ASCII character is a
string.

Example 1:
“This is a string”
Example 2:

44

\\a

2.1.5 Void

void

Use the void type to signify a function that has no return
value.

2.2 Non-Primitive Types

2.2.1 Arrays

array

An array 1s a container that holds a number of values of a
single type. The array size can be specified at creation,
but in PieNum arrays are dynamically resizeable. For an
array holding integers, the default value is 0. For an
array holding strings, the default value is null. For an
array holding floats, the default value is 0.0. For an
array holding booleans, the default value is false. Arrays
in PieNum are zero indexed.

3. Operators

3.1 Operators for Primitive Types
3.1.1 Assignment Operator
The assignment operators assign values from the right hand

operand to the left side operand.

Examples:

int x = 8;
o + 7;

int z = true;

int vy

3.1.2 Arithmetic Operations

The arithmetic operators include + (addition), -
(subtraction), * (multiplication), / (division) and
negation. These operations are not defined for boolean.
Addition: int x = 5 + 2;

Subtraction: int x = 3 - 2;

Exponent: int x = 473;

Multiplication: int x = 1 * 2;

Division: int x = 10 / 2;
Negation: int x = -4;

Increment and Decrement:

#increment the variable i by one and then store the result
in i#
i++;

#decrement the variable i by one and then store the result
in i#

i--;

3.1.3 Precedence of Arithmetic Operations
The precedence of arithmetic operations and assignment is
as follows:

(Highest) Assignment operator =
Increment/Decrement ++/--

Parentheses for grouping of
operations ()

Exponent #
Multiplication operator ¥

Division operator /

Addition operator +

(Lowest) Subtraction or negation
operator -

Example:
int y =3 * (4 - 7)"3 ;
v 1s assigned the value -81

3.1.4 Relational Operators
value < value
value > value
value <= value
value >= value

The operators are < (less than), >(greater than), <= (less
than or equal to) and >=(greater than or equal to). The

relational operators group left to right.

3.1.5 Equality Operators

value == value
value != value
The == (equal to) and != (not equal to) operators evaluate

the expression to determine if the two expressions are
equal or not equal.

3.1.6 Logical Operators

boolean value && boolean value

boolean value || boolean value

The && (logical AND) returns true if both expressions are
met and false otherwise. The || (logical OR) returns true
if at least one expression is true and false if no
expressions are met.

3.2 Array Operations

The array operations include + (addition), - (subtraction), *
(multiplication), ** (Cross Product), ~(inverse). These
operations are not defined for boolean.

3.2.1. Addition

On two 1D arrays this creates an array with the elements of
both arrays.

Example:
int[] arrayl = {1, 2, 3, 4};
int[] array2 = {4, 5, 7, 8};

int[] array3 = arrayl + array2;
#farray3 contains the elements of both arrayl and
array2#

On two matrices with the same dimensions this creates a
matrix with the elements of both matrices. This throws an
error if done between matrices of different dimensions.

This throws an error if done between a primitive data type
and array.

Example:
int[] matrixl = { {1, 2}, {3, 4 }};

int[] matrix2 = { {7, 8}, {9, 10}};
int[] matrix3 = matrixl+ matrix?2;

the contents of matrix 3 are:

[8, 10]

[12, 14]

#

3.2.2 Multiplication

Between an array (1D or 2D) and a non-boolean primitive
data type, this multiplies all values of the matrix by the
data type(scalar multiplication).. The type of the data
type and the matrix data type must be the same.

Between two 1D arrays this calculates the dot product.

Between two matrices this performs matrix multiplication.
If matrix A’s width is not equal to matrix B’s height, then
an error is thrown.
Example:

int[] matrixl = { {1, 2}, {3, 4 }};

int[] matrix2 = { {7, 8}, {9, 10}};

int[] matrix3 = matrixl * matrix2;
the contents of matrix3 are:

[25, 28]

[57, 64]

#

0.5 * matrix3;
#The above is an invalid operation, matrix of int
cannot be multiplied by float value#

matrix3 =* 2; #multiplies all values of matrix3 by 2#
int[] arrayl = {1, 2, 3, 4};
int[] array2 {4, 5, 7, 8};

the value of x is 67
int x = arrayl * array2;

3.2.3 Subtraction

On two 1D arrays this creates an array with the elements of
the matrix on the left hand side of the operator minus the
elements on the right hand side of the operator. This
throws an error if done between two matrices.

Example:
int[] matrixl = { {1, 2}, {3, 4 }};
int[] matrix2 = { {7, 8}, {9, 10}};
int[] matrix3 = matrixl - matrix2;
the contents of matrix 3 are:
[_61 _6]
[-6, -06]
#

3.2.4 Cross Product

Between two 1D arrays of the same dimensions this
calculates the cross product. This throws an error if done

between two matrices or 1D arrays that don’t have the same
dimensions.

Example:
int[] matrixl = {2,3,4};
Int[] matrix2 = {5,6,7};

Int[] cross product = matrixl ** matrix2

#the content of cross product
[=3,6,-3]

3.2.5 Inversing

Creates a matrix that is the inverse of the original matrix
by multiplying it by its identity matrix. Throws an error
if done on a primitive data type, 1D array, or matrix that
is not square. If a matrix is composed of int values and
inverting yields floating point values, the floating point
component of the number will be thrown out.

Example:
int[] matrixl = { {1, 2}, {3, 4}};
int [] inverse = ~matrixl;
#the content of inverse is
(-2, 1]
(1, O]
#

3.2.6 Return the length of the array
This returns the length of a one-dimensional array.

Example:
int[] array = [2,3,4];
#size = 3%
int size = array.length()

4., Statements

4.1 Expression Statements

Expression statements are in the form: statement ;
Usually expression statements are assignments or function
calls.

Example:
int value;

int value = 14;

4.2 if statement
The two forms of conditional statements are:
1. if (expression) {statement}
2. 1f (expression) {statementl}
else
{statement?2}

The expression is evaluated in both cases and if it is true
then the first statement is executed, if it evaluates to

false statement?2 is executed.

4.3 while statement
The while statement has the form:

while (expression) {statement}

The statement is executed repeatedly as long as the
expression evaluates to true.

4.4 for loops
The for loop has the form:

for(int 1 = j; i < k; 1i++){

statements;

The statement is executed repeatedly as long as the

condition is still in the range.

4.5 return statement
The return statement has the form:

1. return null;

2. return (expression);

In the first case nothing is returned to the caller of the

function, in the second case the expression is returned.

5. Methods

5.1 Method Basics

A method is a program procedure that is defined as part of
a class. It is collection of statements that are grouped
together to perform an operation. A void method returns
nothing when called. If the void keyword is not present in
the method declaration then the method must return another
datatype. A method may or may not take in parameters. The
data type of the parameters must be declared.

There is no method overloading in this language.

An example of a method declaration:

datatype methodName (datatype paraml) {
#group of statements that do something#
return datatype;

}

#this method does not take in any parameters or return
anything#

void methodName () {
#group of statements that do something#

5.2 Main Method

The main method is a method that calls other methods in
other files or the methods in the same file it is defined
in. There can only be one main method in a file. The
parameters for the main method is always a String array
called args. This String array are command line arguments
that are space separated. The main method always returns

void.

Main method declaration:

void main (String[] args)

do something

6. Scope

Scope refers to the lifetime and accessibility of a variable.
The scope of the variable depends on where it is declared.

6.1 Local Variables

Local variables are those declared within designated
brackets within a method, conditional statements, etc.
Local variables can only be used within the method they are
defined in. The variable is created when the method is
entered or conditional begins and are garbage-collected
once the method is exited or conditional ends.

Example:
int doStuff (int a) {

a and i only exists within this method and once the
method returns a is garbage collected #

int 1 = 0;
while (i < 100) {
int b = a+2;
a = atb;
i1++;
b only exists within this loop, once the loop
exists, b is garbage collected#

}

return a;

6.2 Global Variables
Global variables are declared outside of all functions, and

therefore they are available to be used throughout the

entire program. Global variables are declared with the
keyword global.

Example:

#a is a global variable#

global int a = 2;

if (expression)

7. File I/0

Since this is a matrix-oriented language file I/0 will be be for
reading in files in portable pixmap format (PPM) and outputting
files in portable pixmap format.

7.1 Reading in a File
The readImage function takes in a String of a PPM file and

outputs a matrix corresponding to the matrix of the image.

Example:
int[][] matrix = readImage (“image.ppm”) ;

7.2 Output Image File

The postImage function takes in a matrix and outputs a PPM
file corresponding to that matrix of the given name. The
file will be outputted in the current directory of the

program.

Example:

postImage (int[][] matrix, “outputFile.ppm”);

8. Sample Program (For DEMO)

8.1 Image Rotation
In PieNum, the image rotation function rotates a matrix
around the X-axis by a specified angle. This is generally

used for image rotation.

Example:

‘-1’ rotates the image counterclockwise 90 degrees and ‘1’
rotates the image clockwise 90 degrees. This returns a new
rotated matrix#

int rotate matrix(int[][] matrix, -1);
int rotate matrix(int[][] matrix, 1);

8.2 Image Resizing

In PieNum, the resize matrix function takes in two
parameters, the first parameter is the size and name of the
original matrix, and the second parameter is the new size
of the matrix. It returns the newly resized matrix.

Example:
#This resize function takes a 4 by 4 matrix and resizes it

to a 2 by 1 matrix#

int resize matrix (int([4][4] matrix, int [2][1] new size);

8.3 Image Contrast

Image contrasting in PieNum, offset the r, g, and b
components of colors in an image to contrast the color of
the image.

Example:
image contrast (offset r, offset g, offset b);

8.4 Image Morphing

A Transformation is a function that maps one set to another
set after performing some operations.The startPicture
parameter is the original image, the endPicture parameter
is the image the picture is blended with, and the
degreeOfMorphing parameter is the degree the morphing is
done to. degreeOfMorphing is a float ranging from 0.0 to
1.0.

Example:

image morph (int[][] startPicture, int[][] endPicture, float
degreeOfMorphing) ;

8.5 Image Convolution

The image convolution method(image convolute) takes in the
original image as a matrix and a 3 X 3 matrix which
represents a kernel. The kernel is then applied to each
pixel to produce different effects like Gaussian blurring,
image sharpening and edge detection(each effect requires a
unique kernel).

image convolute (int[][] kernel, int[][] original image);

