PIXL

Language Reference Manual

Maxwell Hu (mh3289)
Justin Borczuk (jnb2135)
Marco Starger (mes2312)

Shiv Sakhuja (ss4757)

Jacob Gold (jeg2213)

Introduction

Lexical Conventions

2.1. Comments

2.2. Identifiers-Justin

2.3. Keywords-Justin

2.4. Type Specifiers

2.5. Punctuators

2.6. Operators
2.6.1. Arithmetic and Logical Operators
2.6.2. Pixel Operators
2.6.3. Operator Precedence

Syntax Notation

3.1. Function Declarations

3.2. Function Calls

3.3. Variable Declarations

3.4. Postfix/Prefix Expressions

3.5. Matrix Declaration

3.6. Matrix Access

Standard Library Functions
4.1. Pixel Manipulations

42. 10
Semantics
5.1. Scope

5.2. Recursion

Statements

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

Block

Conditional Statement
For Loops

Enhanced for loop
While Loops

Return Statement

1 Introduction

PIXL is a 2D matrix manipulation language that uses a pixel as a primitive type in order
to more easily process images and apply filters using image signals. Pixel operations include
adding, subtracting and negating individual pixels; pixel arrays are able to use the same operators
as pixels, where the operation will be applied to each corresponding pixel pair in the matrices.
PIXL also contains standard library functions that support transformations such as masking,
intersecting, blurring, sharpening, etc. PIXL makes it easier to apply algorithms, transformations,
and combinations to images.

In order to easily work with image files, PIXL has file I/O capabilities. More importantly,
an image file can be easily loaded into a pixel matrix in order to process the image signal. A
pixel matrix can also easily be written into a file for export.

For easy manipulation of pixel matrices, PIXL uses enhanced loops that can easily loop
through all the pixels of an image in order to apply a common function to each pixel, and can do

this for multiple images as well for functions that manipulate images based on another image’s
pixel values.

2 Lexical Conventions

2.1 Comments

/l Single Line Comment
[* L * Multi Line Comment
2.2 Identifiers

Identifiers must have an upper or lowercase letter as a first character, which can be followed by
any assortment of uppercase or lowercase letters, underscores, and numbers.

2.3 Keywords

Keywords Description

if Enters statement if condition is met

else if Paired with if; evaluated only when if/else if statements
above in the same block haven’t been satistied

else Default if no other conditions are satisfied in the block

for Repeats until a condition is satisfied

while Repeats until a condition is satisfied

return Returns value from function

break Exits loop containing statement and continues at the first
statement outside the loop

main The main function is the starting point of a program

true Boolean literal for 1

false Boolean literal for 0

void Keyword used for functions

2.4 Type Specifiers

boolean Boolean value

char ASCII character

int Integer

float Float

pixel One pixel’s color and transparency

information

String Encapsulated character array representation

File Encapsulated file pointer

2.5 Punctuators

A punctuator is a symbol that does not specify a specific operation to be performed but rather has
syntactic value to the compiler in order to format code

Symbol Definition

; Statement terminator

{} Block of statements

2.6 Operators
2.6.1 Arithmetic/Logical Operators

Arithmetic/Logical Operator Description

= Assignment Operator

+ Additive Operator

- Subtraction Operator

* Multiplication Operator

/ Division Operator

Exponentiation Operator

== Returns 1 if values are equal, 0 otherwise

+= Adds value on the left to the value on the right and stores
in the left variable

Returns 1 if values are not equal, 0 otherwise

> Greater than operator

< Less than operator

>= Greater than or equal to operator
<= Less than or equal to operator
&& Logical AND operator

| Logical OR operator

! Logical NOT operator

2.6.2 Pixel Operators

Operator

Description

Example

+

+ works the same way as Java.
However, when adding two pixels
together you add the corresponding
r,g,b values in each pixel together to
create a new tuple. If the sum of two
corresponding values exceeds 255,
then 255 is used as the sum value. +
can also be used as an operand
between two matrices of the same
dimensions: the + operator is applied
to each corresponding pixel pair and
adds them using the pixel + operator.

pixel x1 =(100,100,200,0.5)
pixel x2 = (50,50,100,0.5)

pixel x3 =x1 +x2

// x3: (150,150,255,0.5)

Works the same way as addition,
except you subtract the two tuples.
Absolute value is used to avoid
negative integers. - can also be used as
an operation on matrices. Like
addition, each corresponding pixel
pair is subtracted.

pixel x1 = (100,100,200,0.5);
pixel x2 = (50,50,100,0.5);

pixel x3 =x1 - x2;

/1 x3: (50,50,100,0.5)

The equals assignment operator sets

pixel x =(100,50,100,0.5);

the value of the left variable equal to
the value of the right side.

pixel y =x;

/'y (100,50,100,0.5)

The equality check for pixels returns
True if the pixels have the same rgba
values, and False if any of the rgba
values differ.

pixel x =(100,100,100,0.5);
pixel y =(100,100,100,0.4);
boolean b =x ==y;

// b: False

&&

Logical AND is applied to two pixels
in the following way:

1)If the pixels are the same, return the
pixel.

2) If the pixels are different, return
(0,0,0,0).

The Logical AND operator can also be
applied to two matrices. In this case, it
takes corresponding pixel pairs in two
matrices of the same size and applies
the two rules above to output a third
matrix.

pixel x =(100,100,100,0.5);
pixel y =(100,100,100,0.5);
pixel z=x && y;

//'z: (100,100,100,0.5);

2.6.3 Operator Precedence

The following table displays operator precedence from highest to lowest.

Operator Symbol Description

! Logical NOT operator
* Multiply, divide

+ - Add, subtract

equal to

Greater than, less than, greater than or equal to, less than or

= |I= Equality, inequality

&& || Logical AND, logical OR

= Assignment operator

3. Syntax Notation

3.1 - Function Declarations

Function headers are made in the same way as java. The return type is mentioned first, or void is
used if there is no return type. Then, the function name is written, followed by 0 or more
parameters.

type function name(arguments){...}

3.2 - Function Calls

A function can be called by including another file that contains the function, and then calling the
function by using the following syntax:

functionName(parameterl, ...)

3.3 - Variable Declarations
type variable = new type();

3.4 - Postfix/Prefix Expressions

i++; // increments 1 by 1, returns 1
++i; // returns 1, increments i by 1
1+=3; // adds 3 to i, returns i

i--; // decrements 1 by 1, returns i
--1; //returns 1, decrements 1 by 1
1-=3; // subtracts 3 from i, returns i

3.5 - Matrix Declaration

A matrix is declared by using double brackets, and the size of the matrix must be declared. The
first integer is the number of rows, and the second integer is the number of columns.
pixel[][] pMatrix = new pixel[5][6]; // This creates a matrix of 5 rows and 6 columns

3.6 - Matrix Access

A specific value in a matrix can be accessed by integers i and j, where i indicates the i+1" row
and j indicates the j+1™ column (index starts at 0).
pMatrix[i][j] // Accesses the value at row i+1 and column j+1

int[][] iMatrix = new int[3][4];
// fill iMatrix

[11 [2] [3] [4]
[51 [6] [71 [8]
[91 [10][11] [12]

iMatrix[2][1] // gets the value in the 3rd row and 2nd column, which is 10

4. Standard Library Functions

4.1 - Pixel Manipulations

Built-in library functions will allow user to apply several different filters to pixel matrices. These
filters include:

-Gray Scale
-Tint

-Black and White
-Sharpen

-Invert

4.2 - File I/O

Standard Library Functions will be available for File I/O to create pixel matrices from ppm files
for manipulation. The syntax for File I/O is as follows:

File f1 = new File(“imagel.ppm”); //when declared will set instance variables for
//dimensions of the image

pixel [][] p1 = fl.load() //Because fl has dimensions as instance variables, they will be
//returned and set as dimenstions for p1.

S. Semantics
5.1 Scope

Scope rules are similar to Java.

Variables declared within a block — for example, in a loop, or in a function, are /ocal to the code
block.

Example:
if (0 < 1) {
int a=1;

}

print(a);
>> ERROR

For example, the program above will throw an error because the variable a is only available
within the code block.

Variables declared outside every block are global, i.e — accessible throughout the program.

Example:

int a = 0;

if (0 < 1) {
a=1;

}

print (a);

>> 1

5.2 Recursion

Recursion occurs when a function is called within the function itself.

6. Statements
6.1 Blocks

Code blocks are 1 or more lines of code which are surrounded by curly braces. They are most
commonly used in conditionals, loops and methods.

Note: Code blocks have local scope, so variables declared within a code block are only available
within that code block.

6.2 Conditional Statement

Conditional statements include if, else if and else statements, which work as they do in Java.
Conditional statements must also contain a code block using braces to be executed if the
condition is met.

if (condition) { // code to execute }
Example of conditional statement:

if (foo == bar) {
print (Y“bar”);

}

else if (foo == 23) {
print (“yay!”);

}

else {
print (“oops”) ;

6.3 For Loops

For loops can consist of two types.
Standard for-loop: This is a standard for loop. It requires an initialization statement, a
conditional statement and a code block to execute.
Example:
for (int i=0; 1i<5; 1i++) {

6.4 Enhanced for loop

This is a special kind of for loop designed to iterate through rows of pixels, specifically for the
purpose of image manipulation.
for (pixel p : matrixName) {

6.5 While Loops

This kind of loop evaluates a condition, and if it is true, executes the code block following the
condition. At the end of the code block, it returns to the line with the condition, and repeats the
process until the condition is no longer true.

Example:
while (foo < bar) {

6.6 Return Statement

Return statements are used in methods to return a value. A return statement ends the method. The
lines following a return statement are not executed.

All methods with a return type other than void must have a return statement. The return type
must match the method signature.

Example:
int getRedValue () {

return red;

