
PIXL 
Language Reference Manual 

 
Maxwell Hu (mh3289)  

Justin Borczuk (jnb2135) 
Marco Starger (mes2312) 

Shiv Sakhuja (ss4757) 
Jacob Gold (jeg2213) 

 
 

1. Introduction 
2. Lexical Conventions 

2.1. Comments 
2.2. Identifiers-Justin  
2.3. Keywords-Justin 
2.4. Type Specifiers 
2.5. Punctuators 
2.6. Operators 

2.6.1. Arithmetic and Logical Operators 
2.6.2. Pixel Operators 
2.6.3. Operator Precedence 

3. Syntax Notation 
3.1. Function Declarations 
3.2. Function Calls 
3.3. Variable Declarations 
3.4. Postfix/Prefix Expressions 
3.5. Matrix Declaration 
3.6. Matrix Access 
 

4. Standard Library Functions 
4.1. Pixel Manipulations 
4.2. I/O 

 
5. Semantics 

5.1. Scope 
5.2. Recursion 
 



6. Statements 
 

6.1. Block 
6.2. Conditional Statement 
6.3. For Loops 
6.4. Enhanced for loop 
6.5. While Loops 
6.6. Return Statement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 Introduction 
PIXL is a 2D matrix manipulation language that uses a pixel as a primitive type in order 

to more easily process images and apply filters using image signals. Pixel operations include 
adding, subtracting and negating individual pixels; pixel arrays are able to use the same operators 
as pixels, where the operation will be applied to each corresponding pixel pair in the matrices. 
PIXL also contains standard library functions that support transformations such as masking, 
intersecting, blurring, sharpening, etc. PIXL makes it easier to apply algorithms, transformations, 
and combinations to images. 

 
In order to easily work with image files, PIXL has file I/O capabilities. More importantly, 

an image file can be easily loaded into a pixel matrix in order to process the image signal. A 
pixel matrix can also easily be written into a file for export. 

 
For easy manipulation of pixel matrices, PIXL uses enhanced loops that can easily loop 

through all the pixels of an image in order to apply a common function to each pixel, and can do 
this for multiple images as well for functions that manipulate images based on another image’s 
pixel values. 

2 Lexical Conventions 

2.1 Comments 
 

// Single Line Comment 

/* … */ Multi Line Comment 

 
 
2.2 Identifiers 
 
Identifiers must have an upper or lowercase letter as a first character, which can be followed by 
any assortment of uppercase or lowercase letters, underscores, and numbers. 

 



 

2.3 Keywords 
 

 

Keywords Description 

if Enters statement if condition is met 

else if Paired with if; evaluated only when if/else if statements 
above in the same block haven’t been satisfied 

else Default if no other conditions are satisfied in the block 

for Repeats until a condition is satisfied 

while Repeats until a condition is satisfied  

return Returns value from function 

break Exits loop containing statement and continues at the first 
statement outside the loop 

main The main function is the starting point of a program 

true Boolean literal for 1  

false Boolean literal for 0 

void Keyword used for functions 

 

2.4 Type Specifiers 
 

boolean Boolean value 

char ASCII character 

int Integer 

float Float 

pixel One pixel’s color and transparency 
information 



String Encapsulated character array representation 

File Encapsulated file pointer 

 
 
 

2.5 Punctuators 
 
A punctuator is a symbol that does not specify a specific operation to be performed but rather has 
syntactic value to the compiler in order to format code 
 

Symbol  Definition 

; Statement terminator 

{ } Block of statements 

 

 
2.6 Operators 
2.6.1 Arithmetic/Logical Operators 
 
 

Arithmetic/Logical Operator Description 

= Assignment Operator 

+ Additive Operator 

- Subtraction Operator 

* Multiplication Operator 

/ Division Operator 

^ Exponentiation Operator 

== Returns 1 if values are equal, 0 otherwise 

+=  Adds value on the left to the value on the right and stores 
in the left variable  



!= Returns 1 if values are not equal, 0 otherwise 

> Greater than operator 

<  Less than operator 

>= Greater than or equal to operator 

<= Less than or equal to operator 

&& Logical AND operator 

|| Logical OR operator 

! Logical NOT operator 

 
 
 
2.6.2 Pixel Operators 
 

Operator Description Example 

+ + works the same way as Java. 
However, when adding two pixels 
together you add the corresponding 
r,g,b values in each pixel together to 
create a new tuple. If the sum of two 
corresponding values exceeds 255, 
then 255 is used as the sum value. + 
can also be used as an operand 
between two matrices of the same 
dimensions: the + operator is applied 
to each corresponding pixel pair and 
adds them using the pixel + operator. 

pixel x1 = (100,100,200,0.5) 
pixel x2 = (50,50,100,0.5) 
 
pixel x3 = x1 + x2 
 
// x3: (150,150,255,0.5) 

- Works the same way as addition, 
except you subtract the two tuples. 
Absolute value is used to avoid 
negative integers. - can also be used as 
an operation on matrices. Like 
addition, each corresponding pixel 
pair is subtracted. 

pixel x1 = (100,100,200,0.5); 
pixel x2 = (50,50,100,0.5); 
 
pixel x3 = x1 -  x2; 
 
// x3: (50,50,100,0.5) 

= The equals assignment operator sets pixel x = (100,50,100,0.5); 



the value of the left variable equal to 
the value of the right side. 

pixel y = x; 
 
// y: (100,50,100,0.5) 

== The equality check for pixels returns 
True if the pixels have the same rgba 
values, and False if any of the rgba 
values differ. 

pixel x = (100,100,100,0.5); 
pixel y = (100,100,100,0.4); 
boolean b = x == y; 
 
// b: False 

&& Logical AND is applied to two pixels 
in the following way: 
 
1)If the pixels are the same, return the 
pixel. 
 
2) If the pixels are different, return 
(0,0,0,0).  
 
The Logical AND operator can also be 
applied to two matrices. In this case, it 
takes corresponding pixel pairs in two 
matrices of the same size and applies 
the two rules above to output a third 
matrix. 

pixel x = (100,100,100,0.5); 
pixel y = (100,100,100,0.5); 
pixel z = x && y; 
 
// z: (100,100,100,0.5); 

 
 
2.6.3 Operator Precedence 
 
The following table displays operator precedence from highest to lowest. 
 
 

Operator Symbol Description 

! Logical NOT operator 

*     / Multiply, divide 

+   - Add, subtract 

>     <     >=     <= Greater than, less than, greater than or equal to, less than or 
equal to 



==     != Equality, inequality 

&&     || Logical AND, logical OR 

= Assignment operator 

 
 
 

3. Syntax Notation 
 
3.1 - Function Declarations 
 
Function headers are made in the same way as java. The return type is mentioned first, or void is 
used if there is no return type. Then, the function name is written, followed by 0 or more 
parameters. 
 
type function_name(arguments){...} 
 

3.2 - Function Calls 
A function can be called by including another file that contains the function, and then calling the 
function by using the following syntax: 
 
functionName(parameter1, …) 
 

3.3 - Variable Declarations 
type variable = new type(); 
 
  
3.4 - Postfix/Prefix Expressions 
i++; // increments i by 1, returns i 
++i; // returns i, increments i by 1 
i+=3; // adds 3 to i, returns i 
i--; // decrements i by 1, returns i 
--i; //returns i, decrements i by 1 
i-=3; // subtracts 3 from i, returns i 
 



3.5 - Matrix Declaration 
A matrix is declared by using double brackets, and the size of the matrix must be declared. The 
first integer is the number of rows, and the second integer is the number of columns. 
pixel[ ][ ] pMatrix = new pixel[5][6]; // This creates a matrix of 5 rows and 6 columns 
 

3.6 - Matrix Access 
A specific value in a matrix can be accessed by integers i and j, where i indicates the i+1th row 
and j indicates the j+1th column (index starts at 0). 
pMatrix[i][j] // Accesses the value at row i+1 and column j+1 
 
int[ ][ ] iMatrix = new int[3][4]; 
 
// fill iMatrix 
 
[1]  [2]   [3]    [4] 
[5]  [6]   [7]    [8] 
[9]  [10] [11]  [12] 
 
iMatrix[2][1] // gets the value in the 3rd row and 2nd column, which is 10 
 
 
 
 

4. Standard Library Functions 
 
4.1 - Pixel Manipulations 
Built-in library functions will allow user to apply several different filters to pixel matrices. These 
filters include: 
 
-Gray Scale 
-Tint 
-Black and White 
-Sharpen 
-Invert 
 



4.2 - File I/O 
Standard Library Functions will be available for File I/O to create pixel matrices from ppm files 
for manipulation. The syntax for File I/O is as follows:  
 
File f1 = new File(“image1.ppm”); //when declared will set instance variables for  
                                                      //dimensions of the image 
 
pixel [][] p1 = f1.load() //Because f1 has dimensions as instance variables, they will be  
                                    //returned and set as dimenstions for p1. 
 
 

5. Semantics 
5.1 Scope 
Scope rules are similar to Java. 
 
Variables declared within a block – for example, in a loop, or in a function, are local to the code 
block. 
 
Example: 
if (0 < 1) { 
    int a=1; 
} 

print(a); 

 

>> ERROR 
 
For example, the program above will throw an error because the variable a is only available 
within the code block. 
 
Variables declared outside every block are global, i.e – accessible throughout the program. 
 
Example: 
int a = 0; 
if (0 < 1) { 
    a=1; 
} 

print(a); 



 

>> 1 

 
5.2 Recursion 
Recursion occurs when a function is called within the function itself. 
 
 

6. Statements 

6.1 Blocks  
Code blocks are 1 or more lines of code which are surrounded by curly braces. They are most 
commonly used in conditionals, loops and methods. 

 
Note: Code blocks have local scope, so variables declared within a code block are only available 
within that code block. 
 

 

6.2 Conditional Statement 
Conditional statements include if, else if and else statements, which work as they do in Java. 
Conditional statements must also contain a code block using braces to be executed if the 
condition is met. 

 
if  (condition)  {  //  code  to  execute  } 
 

Example of conditional statement: 
 
if  (foo  ==  bar)  { 

print(“bar”); 

} 

else  if  (foo  ==  23)  { 
print(“yay!”); 

} 

else  { 
print(“oops”); 

} 

 
 
 



6.3 For Loops 
For loops can consist of two types. 
Standard for-loop: This is a standard for loop. It requires an initialization statement, a 
conditional statement and a code block to execute. 
Example: 

for  (int  i=0;  i<5;  i++)  { 
//  code  to  execute 

} 
 

6.4 Enhanced for loop 
This is a special kind of for loop designed to iterate through rows of pixels, specifically for the 
purpose of image manipulation. 

for  (pixel  p  :  matrixName)  { 
// code to execute 

} 
 
 

6.5 While Loops 
This kind of loop evaluates a condition, and if it is true, executes the code block following the 
condition. At the end of the code block, it returns to the line with the condition, and repeats the 
process until the condition is no longer true. 
 
Example: 
while  (foo  <  bar)  { 

//  code  to  execute 
} 
 

 

6.6 Return Statement 
Return statements are used in methods to return a value. A return statement ends the method. The 
lines following a return statement are not executed. 
 
All methods with a return type other than void must have a return statement. The return type 
must match the method signature. 
 
Example: 
int  getRedValue()  { 

//  some  code  to  execute 



return  red; 
} 


