COMS 4115: NumNum Language Reference Manual
Programming Languages and Translators
COMS 4115 W Section 1
Prof. Edwards

October 15, 2017

Sharon Chen syc2138 Tester

Kaustubh Gopal Chiplunkar ke3148 Language Guru
Paul Czopowik pc2550 Manager

David Tofu dat2149 Tester

Art Zuks az2487 System Architect




Table of Contents

Table of Contents
Introduction

Lexical Conventions

White space
Comments
Identifiers for functions and variables:
Keywords:
Constants

Integer Constants

Floating Point Constants

String Constants

Escape Characters:

Syntax
Code Blocks
Functions:
Control Flow
Loops
For Loop
While Loop
Continue
Break
Conditional Statements
Operators
Binary Operators
Unary Operators
Assignment Operators
Operator Precedence
Matrices
Standard Matrix Library

© 00 0 0 N NN O O O o O OO oror o1 »n A ADADAPOVW®WW ODN



Introduction

NumNum is a programming language which is based on C and Python languages. It is designed
to be domain specific matrix and array manipulation language. NumNum differs in syntax and
encapsulates the best of C and Python and some other common languages to deliver a fun and
easier programming experience for a user.

Lexical Conventions

White space

White space is used to separate tokens in the language and is otherwise ignored. The
programmer is free to use space, tab or newline characters to make code more readable.

Comments

The character /* marks the start of a string and the character */ marks its end.

Identifiers for functions and variables:

An identifier is a sequence of letters and digits and the first character must be alphabetic. The
underscore _ counts as alphabetic. Upper and lower case letters are considered different.
Declared more formally as :

['a'=-'z']['a'="z" '"A'=-'Z'" 'QO'='9" ' ' %
Keywords:
e int e print
e float e void
® str ® shape
e while e dims (# dimensions)
e for e func
e if ® continue
e eclsif ® Dreak
® clse ® return



Constants

The language contains the following constants:

e integer
e floating point number
e string

Integer Constants

An integer constant consists of a sequence of digits. The language recognizes decimal numbers
only and does not recognize binary, octal, hexadecimal or other number systems. Integer
constants are signed by default. To represent a negative integer, the minus sign is used.
Leading zeros are ignored.

Example:
int a = 456
int b = -12

Floating Point Constants

Floating point constants consist of the integral part in form of a sequence of digits, a period and
a fractional part which is also a sequence of digits. The language recognizes decimal numbers
only and does not recognize binary, octal, hexadecimal or other number systems. For the
integral part, leading zeroes are ignored and the number can be signed with a minus sign.

Example:
float a = 456.789
float b = -12.0

String Constants

A string constant is a sequence of characters enclosed by double quotes " and terminated by
a null byte \0 to indicate the end of the string. Strings are not parsed for comments and The
backslash \ is used for escaping characters in the string.

Escape Characters:

\ - Escape Character
\n - newline Character
\t - Tab Character

\\ - Backslash

\” - Quote

Example:



str name = “John Doe”;

str x = Y10 \t 20 \”Inch\””;

str example = "example string /* this is not a comment */ \" still in
the string"

Syntax

The semicolon ; is a statement terminator.
print (“Hello, world!”);

Code Blocks

Code blocks are enclosed by curly braces { }

Functions:

Function has a return type and has arguments. A function cannot return a matrix but can return
other data types. Matrices can only be passed by reference in a function. A function is defined
by calling the keyword 'func' before it is declared.

Syntax:

/* Function Declaration */

func type name (list of parameters) {
statement;
return statement;

/* Function Call */
name (list of parameters);

Example:
func int add(int a, int b) {
return (a + b);

Control Flow

Control flow is achieved by loops and conditional statements. Loops can also use special
control flow statements continue or break.



Loops

There is are two ways to implement loops, a for loop and a while loop:

For Loop
Syntax:

for (expression; condition expression; increment expression) {
statement;

While Loop
Syntax:

while (condition expression) {
statement;

Continue

The continue statement is used to skip the remaining statements in the current iteration of
the loop and begin the next iteration. Can be used for for and while loops.

Break

The break statement is used to stop the execution of the loop. Can be used for for and while
loops.

Conditional Statements

Conditional statements are handled by using if, elsif and else.

Syntax:
if (expression) {
expression;
}elsif (expression) {
expression;
lelse {
expression;



Operators

Binary Operators

Addition of two 32-bit integers/ two 32-bit
floats

Subtraction of two 32-bit integers/ two 32-bit
floats

Division two 32-bit integers/ two 32-bit floats

Two 32-bit integers/ two 32-bit floats

Modulus of two 32-bit integers/ two 32-bit
floats

Equality Check

Inequality Check

Greater Than Operator

Less Than Operator

Greater Than or Equal Operator

Less Than or Equal Operator

Logical And

Logical Or

Unary Operators

Written before in int/float to make it negative

Logical Not




Assignment Operators

= Assignes the right hand value to the variable

on the left

Operator Precedence

[1.{} Highest

!

* 1%

. -

> <,<=>=

== I=

&

I

= Lowest

Matrices

Matrices are not are a primitive datatype. Each matrix has attributes dtype, size, shape, and
dimension. Matrices are stored in the memory sequentially allowing easy index-based
access.

Declaration:
int mat [diml] [dim2];
float mat [2]([3] = [[1,2],[2,3],1[3,411;



Standard Matrix Library

Some built-in functions in the matrix library

print (expression) ;
Prints the expression as a string to standard output. Accepts strings.

sort (type, algorithm);

Returns the sorted array type by reference. Uses the sorting algorithm as denoted by the input
field “Algorithm”. If the requested sorting algorithm is not implemented in the library, uses merge
sort.

dim (expression)
Returns an integer of the dimensions of the input expression.

shape (expression)
Returns an array with the size of each dimension.
Eg:
int u [2]112] = [(1,2),(3,4)];
dim(u); /* Returns 2 */
shape (u); /*Returns [2,2]*/

matrix (dimensions, type)
Returns a matrix of the needed dimensions and data type which is initialized by zeros.
Dimensions have to be constants and not identifiers themselves.

Example:
float mat [3][4] = matrix(3,4,float);



