

 COMS 4115: NumNum Language Reference Manual

Programming Languages and Translators

COMS 4115 W Section 1

Prof. Edwards

October 15, 2017

Sharon Chen syc2138 Tester

Kaustubh Gopal Chiplunkar kc3148 Language Guru

Paul Czopowik pc2550 Manager

David Tofu dat2149 Tester

Art Zuks az2487 System Architect

1

Table of Contents
Table of Contents 2

Introduction 3

Lexical Conventions 3
White space 3
Comments 3
Identifiers for functions and variables: 3
Keywords: 3
Constants 4

Integer Constants 4
Floating Point Constants 4
String Constants 4

Escape Characters: 4

Syntax 5
Code Blocks 5
Functions: 5
Control Flow 5

Loops 6
For Loop 6
While Loop 6
Continue 6
Break 6

Conditional Statements 6
Operators 7

Binary Operators 7
Unary Operators 7
Assignment Operators 8

Operator Precedence 8
Matrices 8
Standard Matrix Library 9

2

Introduction
NumNum is a programming language which is based on C and Python languages. It is designed
to be domain specific matrix and array manipulation language. NumNum differs in syntax and
encapsulates the best of C and Python and some other common languages to deliver a fun and
easier programming experience for a user.

Lexical Conventions

White space
White space is used to separate tokens in the language and is otherwise ignored. The
programmer is free to use space, tab or newline characters to make code more readable.

Comments
The character /* marks the start of a string and the character */ marks its end.

Identifiers for functions and variables:
An identifier is a sequence of letters and digits and the first character must be alphabetic. The
underscore _ counts as alphabetic. Upper and lower case letters are considered different.
Declared more formally as :
['a'-'z']['a'-'z' 'A'-'Z' '0'-'9' '_']*

Keywords:

● int

● float

● str

● while

● for

● if

● elsif

● else

● print

● void

● shape

● dims (# dimensions)
● func

● continue

● break

● return

3

Constants
The language contains the following constants:

● integer
● floating point number
● string

Integer Constants
An integer constant consists of a sequence of digits. The language recognizes decimal numbers
only and does not recognize binary, octal, hexadecimal or other number systems. Integer
constants are signed by default. To represent a negative integer, the minus sign is used.
Leading zeros are ignored.

Example:
int a = 456
int b = -12

Floating Point Constants
Floating point constants consist of the integral part in form of a sequence of digits, a period and
a fractional part which is also a sequence of digits. The language recognizes decimal numbers
only and does not recognize binary, octal, hexadecimal or other number systems. For the
integral part, leading zeroes are ignored and the number can be signed with a minus sign.

Example:
float a = 456.789
float b = -12.0

String Constants
A string constant is a sequence of characters enclosed by double quotes “” and terminated by
a null byte \0 to indicate the end of the string. Strings are not parsed for comments and The
backslash \ is used for escaping characters in the string.

Escape Characters:
● \ - Escape Character
● \n - newline Character
● \t - Tab Character
● \\ - Backslash
● \” - Quote

Example:

4

str name = “John Doe”;
str x = “10 \t 20 \”Inch\””;
str example = "example string /* this is not a comment */ \" still in
the string"

Syntax
The semicolon ; is a statement terminator.
print (“Hello, world!”);

Code Blocks
Code blocks are enclosed by curly braces { }

Functions:
Function has a return type and has arguments. A function cannot return a matrix but can return
other data types. Matrices can only be passed by reference in a function. A function is defined
by calling the keyword 'func' before it is declared.

Syntax:
/* Function Declaration */
func type name (list of parameters){

statement;

return statement;
}

/* Function Call */
name (list of parameters);

Example:
func int add(int a, int b){

return (a + b);
}

Control Flow
Control flow is achieved by loops and conditional statements. Loops can also use special
control flow statements continue or break .

5

Loops
There is are two ways to implement loops, a for loop and a while loop:

For Loop
Syntax:
for (expression; condition expression; increment expression) {

statement;

}

While Loop
Syntax:
while (condition expression) {

statement;

}

Continue
The continue statement is used to skip the remaining statements in the current iteration of
the loop and begin the next iteration. Can be used for for and while loops.

Break
The break statement is used to stop the execution of the loop. Can be used for for and while
loops.

Conditional Statements
Conditional statements are handled by using if, elsif and else.

Syntax:
if (expression){

expression;

}elsif (expression){
expression;

}else {
expression;

}

6

Operators

Binary Operators

+ Addition of two 32-bit integers/ two 32-bit
floats

-

Subtraction of two 32-bit integers/ two 32-bit
floats

/ Division two 32-bit integers/ two 32-bit floats

* Two 32-bit integers/ two 32-bit floats

% Modulus of two 32-bit integers/ two 32-bit
floats

== Equality Check

!= Inequality Check

> Greater Than Operator

< Less Than Operator

>= Greater Than or Equal Operator

<= Less Than or Equal Operator

&& Logical And

|| Logical Or

Unary Operators

- Written before in int/float to make it negative

! Logical Not

7

Assignment Operators

= Assignes the right hand value to the variable
on the left

Operator Precedence

[],{} Highest

!

* , / ,%

+, -

>,<,<=,>=

== , !=

&&

||

= Lowest

Matrices
Matrices are not are a primitive datatype. Each matrix has attributes dtype , size , shape , and
dimension. Matrices are stored in the memory sequentially allowing easy index-based
access.

Declaration:
int mat [dim1][dim2];
float mat [2][3] = [[1,2],[2,3],[3,4]];

8

Standard Matrix Library
Some built-in functions in the matrix library

print(expression);
Prints the expression as a string to standard output. Accepts strings.

sort(type, algorithm);
Returns the sorted array type by reference. Uses the sorting algorithm as denoted by the input
field “Algorithm”. If the requested sorting algorithm is not implemented in the library, uses merge
sort.

dim(expression)

Returns an integer of the dimensions of the input expression.

shape(expression)

Returns an array with the size of each dimension.
Eg:

int u [2][2] = [(1,2),(3,4)];
dim(u); /* Returns 2 */
shape(u); /*Returns [2,2]*/

matrix(dimensions,type)

Returns a matrix of the needed dimensions and data type which is initialized by zeros.
Dimensions have to be constants and not identifiers themselves.

Example:

float mat [3][4] = matrix(3,4,float);

9

