COMS 4115 Programming Languages and Translators
Ryan DeCosmo (rd2680)

Olesya Medvedeva (oam2113)

Jyhyun Song (js4390)

Charis Lam (cl3257)

Language Reference Manual: MiniMap (MML)

1. Introduction

MiniMap Language (MML) is a distributed text processing language that
aims to provide the user with an interface for programming in parallel with its
standard library (this is demonstrated in the sample code at the end). MML draws
from Scala so it is type-safe-- a priority for a small parallel programming system.

The eventual goal 'with MML is to be able to create an interface that uses
a CPU master to harness the GPU as worker nodes. This structure would allow
any user with a GPU to have a mini Hadoop cluster to process text quickly and in
parallel.

2. Lexical conventions
A. ldentifiers
- consist of a string of ASCII letters, digits, underscores
- is case-sensitive
- first character must be a letter
- identifier classification based on type (details to follow)

B. Keywords
auto, break, catch, char, chunk, const, continue,
default, do, double, else, enum, extern, float, for,
goto, if, int, long, main, map, match,case, register,
return, short, signed, sizeof, static, struct, try,
object, extends, var, val, typedef, union, unsigned,
void, volatile, while, finally, , : , =, => ,<-, ->

' Perhaps outside of the scope of this class, but a stretch goal.

C. Delimiters/Separators and Whitespace:

a. Tokens may be separated by whitespace characters and/or
comments.
b. Both single and multiline comments are supported:
i. // the body of the single line comment

i. /* the body of the multiline comment */
c. Other delimiters:

i. Delimiter characters
1. Terminate statements: ;
2. Separating elements: ,
3. Chars: ¢°
4. Strings: “”
5. Access operator: .
ii. Parentheses
1. Tuples, lists: ()
2. Arrays: []
3. Blocks: {}
iii. Newline characters: nl {nl}

3. Data types
- all data types are immutable and may be un-initialized at declaration

A. Primitives

Data Type & Description

Byte
8 bit signed value. Range from -128 to 127

Short
16 bit signed value. Range -32768 to 32767

Int
32 bit signed value. Range -2147483648 to 2147483647

Long
64 bit signedvalue. Range -9223372036854775808 to
9223372036854775807

Float
32 bit IEEE 754 single-precision float

Double
64 bit IEEE 754 double-precision float

Char
16 bit unsigned Unicode character. Range from U+0000 to
U+FFFF

String
A sequence of Chars

Boolean
Either the literal true or the literal false

Null
null or empty reference

B. Other primitives (as of now) with the built-in functions:
a. Arrays:
- store a fixed-size sequential collection of elements of the same
type
- declaration syntax:
var z:Array[data type] = new Array[data
type] (number of elements)

or
var z = new Array[data type](number of
elements)

- declaration with values syntax:
var z = Array(expr, expr, expr)

or

z(0) = expr;
z(1) = expr;
z(2) = expr;

b. Tuples:
- unlike an array or list, a tuple can hold variables of different types
- tuples are indexed at 1(for example, Tuple._ 1 returns the first
element in the tuple)
- syntax: ‘(° [exprs] €)’

4. Variables
- MML mostly uses immutable values defined as val = x
- creating a variable introduces a mutable variable of type T
- variable definition syntax: var x = new T(),
- with MML, variables should be used minimally, for example when creating
a new job configuration:
//the backend for processing a distributed text file
var conf = new JobConfiguration()
//path to desired output location for the processed file
val fileOut = FileOutputFormat.setOutputPath(args(1))

5. Expressions
A. Assignment:

-syntax: x = e

- if x is mutable, then the assignment changes the current value of x
to be the result of evaluating the expression e. The type of e is expected to
conform to the type of x.

- if x is immutable, then a new x is created with the value e and the

old instance of x becomes inaccessible

B. Operators: listed in the order of precedence

Category Operator
Postfix O 11
Unary I~

Multiplicative */ %

Additive + -

Shift >> >>> <<
Relational > >=< <=
Equality == I=
Bitwise AND &

Bitwise XOR ~
Bitwise OR |
Logical AND &&
Logical OR I

Assignment = +=-=¥= /= %= >>= <<= &= "= |=

6. Statements
A. Control Flow Statements

- if expression in if-clause evaluates to true, execute statements
- if expression evaluates to false, execute statements in else-clause
- syntax:
if (boolean expression) {
//List of statements
} else {
//List of statements

B. Loop Statements

a.

While
- continues to execute list of statements in the block as long as
boolean expression evaluates to true
- syntax:
while (boolean expression) {
//List of statements

}
Do-While
- list of statements execute at least one time then boolean condition
is checked at the bottom of the loop
- syntax:

do {

//List of statements

}

while (boolean expression);
For

- list of statements in the loop are executed until condition in
expression is no longer true
- syntax:
for (expression) {
//List of statements

d. Break

- immediately terminates block and program control resumes at the

next statement following the block

- syntax:

for (expression) {

//List of statements
break;
//List of statements

C. Pattern Matching
- checks the value against the patterns of a sequence of alternatives,
- each starts with keyword ‘case’
- if pattern matches, executes expression after => symbol

- syntax:
x match {
case 0 => "zero"
case 1 => "one"
case 2 => "two"
case _ => "many"
}

6 Functions
- function declaration syntax:
def functionName (list of parameters):[return type]
- function definition syntax:
def functionName (list of parameters):[return type]={
function body;
return [expr];
}
- parameters: a list of zero or more variables separated by commas
- return types: optional; any valid data type
- function call syntax:
functionName(list of parameters);

7. Scope
- defines whether variables, functions and classes are accessible at a
given point of the program
- there are no globally accessible variables in our program
- functions have global scope and must be declared with unique identifiers
- scope for blocks (ie. body of if statements and loops) are defined by curly
braces: {}
- identifiers declared within curly braces { } have a local scope and are not
accessible from outside

8. MML Standard Library
A. FileTypelndicator

a. CSV
i. Splits basedon‘,’

b. TextFile
i. Splits based on "\r|\n"

c. CustomDelimiter
i. Splits based on the user defined delimiter

B. MiniMapReduce Interface
a. Splitter(FileTypelndicator):String
i. The splitter decides how to split up a text file; either
predefined or user defined. If the user chooses TextFile
or CSV, we will split on predefined criteria
ii. If the user chooses to make it a UDF, then they can
specify the delimiter they wish to split on.
b. Mapper(inputToken:String):UDF-MapReturnType
i. This method takes in the output of the splitter method
and performs an operation on the token. It then returns
a user defined type
c. Reducer(inputTokens[MapReturnType]):String
i. This method takes in an aggregated portion of the
Mapper’s output. It then performs a secondary operation
on the output and transforms it into a String to be written
to file.

C. String class with appropriate methods as in scala

D. Files I/O class
a. FilePath(String)
i. Takes a string and transforms it into a file path
b. Open(FilePath)
i. Takes a file path and opens the specified file
i. If file not found, throws an IOException
c. Write()
i. Writes some information to a file
ii. If this fails, throws an |OException
d. Close()
i. Closes a file safely
ii. If this fails, throws an |OException

E. Lists
- a list is a linked list of elements, unlike an array, size does not need
to be known beforehand.
a. List.size()
i. Returns the size of the List
b. List.get()
i. Gets elementin the list by index
1. l.e. List.get(1) - returns element 1
c. List.foreach()
i. Ilterates through each element of a list to apply a
function or operation
d. List.toArray()
i. Creates an array of size List.size() and copies the
elements of the list to that array
e. List.remove(index)
i. Removes the element of a list at the specified index

F. Maps:
- a map is a collection of key/value pairs. A value is retrieved by
giving its key.
a. get(Key)
i. Returns the value associated with the key
b. getOrElse(Key, “Default If not found”)
i. Ifthere is no value associated with the key, returns the
default value
c. put(k,v)
i. Puts a value (v) into the map and associates it with the
key (k)
d. remove(k,Vv)
i. Removes the specified key value pair from the map

9. Sample Codes (hello, world & parallelization)
This is a program that finds if a word is in a line of text, and if it is, writes that line
to a file

/*

* The purpose of this code is to define a sample program for the MiniMaplLanguage

* We have incorporated ideas from the Map Reduce programming paradigm with a
Scala like language

* In doing so we hope to achieve a language designed to do small batch processing on
text files

* The stretch goal is to have the worker nodes live on the GPU to increase speed for
users

*/
object SampleMiniMap extends MiniMapReduce {

//here user can explicitly define resulting tuple types of their map and reduce
functions

type mapReturnType = (Int,String)

type reduceReturnType = (TextFile)

//the splitter takes in a file type and splits the file into jobs for the nodes
def Splitter(typeOfFile:FileTypelndicator):String {

//File types: TextFile, CSV, CustomDelimiter("|") <-note the custom
delimiter function takes in a custom delimiter and splits a file on that
if(typeOfFile == FileTypeIndicator.TextFile){

//the tokenize string function is built into MML and splits the file
based on a regex
tokenizeString("\r|\n")
} else {
"Operation Undefined"

//we will take in a TextFile for this example (alternative: CSV file)
def Mapper(inputToken:String) :mapReturnType
//first, the text file is presplit by the delimiter or file type
//then, the single line of text is checked on a worker node for the target
string
if(inputToken.contains("TheWordImLookingFor")){
//if word is found, return key and the line number (here the key
also acts as a count)
return (1,inputToken)
} else {
//if word not found, return key, count and “not found” message
return (0, "NotFound")

def Reducer(inputTokens:[mapReturnType]):File {

//reducer receives a small batch of mapped lines (aggregated by the Job in Main)
//reducer then checks the returned mapper Key Value pairs
for(token<-inputTokens){

//if key >0, mapReturnType is successful

if(token._1 > 0){
//if success, add the line to output file
File.Write(Line)

} else {
//in this case, if unsuccessful, do nothing

def main(args: Array[String]) {
//path to input file / name
val fileIn = FilelInputFormat.setInputPaths(args(0))
//path to desired output location for the processed file
val fileOut = FileOutputFormat.setOutputPath(args(1))

//the backend for processing a distributed text file

var conf = new JobConfiguration()
//name of the job
conf.setJobName("SampleMiniMap")

//let the job know location of the file that needs to be split
conf.setInputFile(fileln)

//let the job know where to accumulate
conf.setOutPutFile(fileOut)

//optional line for setting the batch size for each reducer
conf.setBatchFactor()

//pass the splitting method defined above
conf.setSplitter(Splitter())

//pass the mapper function defined above
conf.setMapper(Mapper(_))

//pass the reducer function defined above
conf.setReducer(Reducer(_))

//pass the inputFormat (in this case Text File)
conf.setInputFormat(Type.TextFile)

//pass the output format
conf.setOutputFormat(Type.TextFile)

//the actual job client class runs the job itself
JobClient.runJob(conf);

SampleMiniMap lapReduce {

mapReturnType = (Int,String)
reduceReturnType = (TextFile)

Splitter(type0fFile:FileTypeIndicator):String {
(typeOfFile = FileTypeIndicator.TextFile){
tokenizeString("\r|\n")

"Operation Undefined"

Mapper(inputToken:String) :mapReturnType {

(inputToken. contains("TheWordImLookingFor")){

(1, inputToken)

(8, "NotFound")

Reducer(inputTokens: [mapReturnTypel) :File {

(token<-inputTokens){
(token._1 > @)

File.Write(Line)

main(args: Array[Stringl) {
fileIn = FileInputFormat.setInputPaths(args(0))
fileQut = FileOutputFormat.setOutputPath(args(1))
conf = JobConfiguration()
conf.setJobName ("SampleMiniMap")
conf.setInputFile(fileIn)
conf.setOutPutFile(fileOut)

conf.setBatchFactor()

conf.setSplitter(Splitter(_))

conf.setMapper(Mapper(_))
conf.setReducer(Reducer(_))
conf.setInputFormat(Type.TextFile)

conf.setOutputFormat(Type.TextFile)

JobClient.rundob(conf);

