

Onion Language Reference Manual
By: Andrew Aday, (aza2112) Amol Kapoor (ajk2227), Jonathan Zhang (jz2814)

Introduction 3

Types 3

Lexical Conventions 4
Identifiers 4
Keywords 4
Comments 4

Expressions 5
Primary Expressions 5
Unary Operators 5
Arithmetic Operators 5
Assignment Operators 6
Relational Operators (returns bool) 6
Equality Operators (returns bool) 6
Logical Operators (returns bool) 6

Syntax and Program Structure 6
Assignment 6

Normal declaration and assignment 6
Pipe assignment 7
Matrix declaration 7
Tuple declaration and assignment 7

Control Flow 8
Statements and blocks 8
Anonymous functions 9

Predefined Components 9
A Note on Keywords 9

batch 9
trainable 10
train 10

Program Sections 10
Functions 10
Layers 11

Optimizers 11
Models 12

Batching 12
Run 13

Graph Creation 13

Introduction
In this document we propose Onion, a new language developed to make the design and
implementation of deep learning models easier and more intuitive. Deep learning is an
extremely popular field that is quickly becoming a mainstay of major tech companies like Google
and Amazon. Deep learning models consistently beat state of the art algorithms in many fields.
Deep learning models are mostly created with libraries built on top of Python, e.g. Tensorflow.
Though powerful, these libraries lack visual clarity and are in general cluttered by other
unnecessary features coming from a general purpose language like Python. Onion is a
language built from the ground up specifically for deep learning models that emphasizes visual
clarity and minimalism. We believe Onion can help deep learning experts program deep
learning models the way they think about deep learning models, leading to fewer errors and less
programming time.

Onion aims to be a layers-based library like Slim and Keras, optimized for complex deep
learning models. Onion optimizes for deep learning through Onion’s unique syntax: almost
everything in the language is defined as a layer (processing) or as an array (data). The
minimalist nature of the language makes it extremely easy to quickly define layers that stack
into full, complex deep learning models. The language also allows users to quickly identify how
a data flows through a model (i.e. what components of a piece of code are processing and what
components are data).

Types

Type Description Example

int Integer Data Type int i = 5

float Float Data Type float f = 5.0

bool Single byte boolean (0 or 1) true

string String Data Type “Hello world”

fmatrix nxn float matrix type - default fm = fmatrix([10, 10], 1)

imatrix nxn integer matrix type imatrix im = imatrix([10, 10], 1)

smatrix nxn string matrix type smatrix sm = [[‘hello’], [‘world]]

Lexical Conventions

Identifiers
Variables must begin with a lowercase character, and may contain only a combination of
lowercase characters and underscores (“_”). “_” is not a valid variable name. Variables should
be snake case.
Models and Layers must begin with a capital character, and may only contain a combination of
capital and lowercase layers. Models and Layers should be camelcase.

Keywords

Keyword Description

for For loop

if If-elif-else block

elif If-elif-else block

else If-elif-else block

return Return function expression

no Void return type

model Declare a model object

layer Declare a layer object

optimizer Declare an optimizer layer object

func Declare a function

batch Declare a batch object

trainable Declare a trainable object

train Keyword used to indicate when a model is
training

Comments
/* I am a comment */

/*
And I am a blocky comment

*/

Expressions

Primary Expressions
Identifier: Variable, function, and model names
Constants:

Constant Example

int 5

bool true or false

float 5.0

string “Hello world!\n”. Note how special characters
are prefixed with a backslash, as in c.

Unary Operators
(-expression): defined for int and float. Evaluates to the negative value.
(!expression): logical negation. Booleans only.

Arithmetic Operators
If either expr1 or expr2 is type float, arithmetic operators will cast the other expr to float and
return a float.

(expr1 + expr2): sum float or int, concatenate strings.
(expr1 - expr2): substract floats or int.
(expr1 * expr2): multiply floats or int
(expr1 / expr2): divide floats or int
(expr1 % expr2): modulo ints
(expr1 ** int expr2): exponentiation. Note expr2 must be an integer type

Matrix Operators

(matrix1 ^* matrix2): matrix multiplication on fmatrices or imatrices
(matrix1 ^.* matrix2): hadamard product fmatrices or imatrices. Matrices must be same shape
(matrix1^): transpose

Assignment Operators
(expr1 = expr2): sets the value of expr1 equal to the value of expr2. Both expressions must be
of the same type; Onion does not do implicit type conversion during assignment.
(expr1 => expr2): sets the value of expr2 equal to the value of expr1
See Syntax and Program Structure: Assignment for more details.

Relational Operators (returns bool)
(expr1 < expr2) less than
(expr1 > expr2) greater than
(expr1 <= expr2) less than or equal to
(expr1 >= expr2) greater than or equal to

Equality Operators (returns bool)
(expr1 == expr2) equality
(expr1 != expr2) inequality

Logical Operators (returns bool)
(expr1 and expr2) logical and
(expr1 or expr2) logical or

Syntax and Program Structure

Assignment

Normal declaration and assignment
Declaration of variables is done by indicating the type of the variable followed by a variable
name (in snake case). If the variable being defined is a fmatrix, it does not need to have a
variable type, although it may. More explicitly: variables without a declared type are assumed to
be of type fmatrix. We do this because fmatrix is expected to be the most common type.

Assignment can be done with the equals (=) operator. The Onion language uses left operand
assignment, i.e. the identifier on the left of the equals operator is set to the expression on the
right of the equals operator. For example:

int x = 5;
int y = 10;
Print(x + y, “%d”); /* Prints out 15 */

x = [0.1, 0.2, 0.3]
Print(x[0], “%f”); /* Prints out 0.1 */

Pipe assignment
The model section of an Onion program can assign variables using the pipe (=>) operator. The
pipe operator takes the value of the left operand and ‘pipes’ the value into the right operand
(which may be on a newline). If the pipe operator is used with a Layer or Model component as
the left operand, it will take the return of the Layer or Model (and throw an error if no return is
defined). If the pipe operator is used with a Layer or Model as the right operand, it will pipe the
value of the left operand as the first parameter for the Layer or Model on the right. For example:

int x = 5;
x =>
int y =>
Print("%d”); /* Prints 5 */

Matrix declaration
Matrices can be declared with initial values using brackets. Each value in the matrix must be of
the declared type. For example:

imatrix x = [[0, 1, 2], [3, 4, 5]]; /* defines 2x3 int matrix */

Tuple declaration and assignment
Tuples are a unique data type that are used exclusively for piping data into Layers and Models.
A tuple syntax uses optional parens around comma separated variables of various types and
shapes. For example:

layer Sum((int x, int y, float z)) int {

Print(z, “%f”);
return x + y;

}

int x = 5;

int y = 10;
float z = 0.5;
x, y, z => Sum(); /* parens are optional */
(x, y, z) => Sum();

Control Flow

Statements and blocks
Statements will be delineated by a semicolon:

int statement = Statement();

Blocks will be delineated by opening and closing curly brackets. Variables are local to the
nearest enclosing block.

int a = 1;
{

int a = 5;
a => printf(“%d\n”); /* prints 5 */

}

a => printf(“%d\n”); /* prints 1 */

The keyword for is used for both for-loops and while loops.

for (int i = 0; i < 5; i = i + 1) { /* for loop */

…

}

int i = 5
for (i < 5) { /* while loop */

…

i = i + 1;
}

If-elif-else blocks are standard. You must delineate the statements with curly brackets {}. I.e.
one-line if statements without curly brackets are NOT allowed.

if (condition) {
} elif (condition) {
} else {}

Anonymous functions
Anonymous functions are only allowed within the scope of our predefined Map() function. They
are limited to a single statement, and the result of that statement is used as the return value.
Map can call a func if multiple statements are needed. Anonymous functions have the
following syntax:

(float f): f + 1.0 /* single statement anonymous fn */
(float f): foobar(f) /* multi-statement anonymous fn */

Predefined Components

Component Name Example

print(str) print(“hello world!”);

printf((arg1,arg2,...) , formated_str) printf((1,2), “%d and %d”);
/*1 and 2*/

map(matrix, function) map(
 [1,2,3],
 (int i): i + 1
) /* returns [2,3,4] */

A Note on Keywords
The use of some keywords may not be immediately clear. This section serves to clarify how
these keywords work.

batch
The batch keyword is used in the parameters list of models. The keyword indicates when an
input parameter should be treated as batched, i.e. the model treats the first dimension as a
collection for the data stored in the rest of the dimensions. batch can only be used as a tag for
matrix types (fmatrix, imatrix, smatrix). Any parameter set with batch must have the same first
dimension size. If at least one parameter is set with the batch keyword, the batch_size
parameter can be set. batch_size indicates how many elements of the first dimension of a
batch should be used per batch. batch_size must be positive, less than the size of the batch
input, and divide the batch input cleanly. A few examples:

imatrix x = [[0, 1, 2], [3, 4, 5]];

model BatchExample(batch imatrix x) {
/* x is treated here as a 1x3 matrix, i.e.
 [0, 1, 2] and [3, 4, 5] are passed in separately and loss is
 collected from the batch (the batch size defaults to the size of
 the input, i.e. 2)*/

}

model BatchSizeExample(batch imatrix x, int batch_size=1) {
/* x is treated here as a 1x3 matrix, i.e.
 [0, 1, 2] and [3, 4, 5] are passed in separately and loss is
 collected from the batch, in this case from each input */

}

model NonBatchExample(imatrix x) {
/* x is treated here as a 2x3 matrix, all of the data is passed
 together */

}

trainable
The trainable keyword is used to indicate which variables in a layer can be modified by
optimizers (i.e. can be changed by model training). Any variable that is tagged with trainable
can be accessed by optimizer layers. The trainable keyword can only be used for fmatrices
and only used within layers.

train
The train keyword is used to indicate when a model is training. A model that is activated in
train brackets runs any optimizer layers. A model that is activated outside of train brackets
does not run the optimizer layers. train brackets can only be used in the run section of the
Onion program.

Program Sections

Functions
Functions are extremely basic numerical computation components in the Onion language.
Unlike the other sections listed below, functions are entirely optional and do not need to be
used. An example function may look something like this:

func Max(int x, int y) int {

if (x > y){
return x;

}
return y;

}

The func keyword must be followed by a capitalized string name composed of only upper and
lowercase alphanumeric characters. After the parameter list, the function states its return type. If
no return type is specified, it is assumed to be fmatrix. The function definition cannot use any
of the unique Onion keywords or operators defined below -- it cannot use the pipe operator, the
trainable keyword, the batch keyword; it cannot call other layers, models, or functions (and
therefore cannot recurse); it cannot use the train tag or FileIO.

Layers
Modular abstraction is one of the core ideas of the Onion language. Layers are meant to be
used for manipulating float values in fmatrices directly. They therefore allow users to define
individual components of a network that can be inserted and reused throughout a model
definition. As with functions, layers must state their return type after the parameter list. If no
return type is provided, fmatrix is assumed. Relu layers and FC layers are both defined below.

layer Relu(inputs) {

Map(inputs, lambda x: Max(x, 0));
return inputs;

}

layer FC(inputs, int output_dim, [, str name]) {

trainable weights = fmatrix([inputs.shape, output_dim], 1);

return inputs ^* weights;
}

The layer keyword must be followed with a capitalized string name composed only of upper
and lowercase alphanumeric characters. A layer definition cannot call another layer or model,
and cannot use the pipe operator. A layer definition can index inputs and manipulate individual
float values. A layer definition can use the trainable keyword to signify the creation of graph
variables, but cannot use the trainable keyword more than a single time. Any layer definition
can use the optional ‘name’ parameter to define a layer name for use in the run section of the
graph; and ‘name’ cannot be used as the name of a parameter. Layer variables are not public;
only the return of the layer can be accessed.

Optimizers
Onion also defines a subset of layer objects, called optimizers. Declaring an optimizer layer is
syntactically identical to normal layers, only we replace the layer keyword with optimizer:

optimizer SGD(float loss, float step_size) {...}

Every composite model, i.e. a model including all its nested models (if any), must include an
optimizer. The optimizer layer implicitly has access to all the trainable variables used by the
other layers in the model. This allows Onion to update trainable variables without the user
explicitly passing them as parameters.

Models
Models represent the flow of data from one layer to the next. A model does not define
computation; rather, it lays out how computational units (i.e. layers) interact with one another.
The model is therefore composed of layers. An example MNIST model may look something like
the following:

model MNIST([batch] inputs, [batch] labels [, int batch_size = 10]) {

inputs =>
FC(64, ‘layer1’) =>
Relu() =>
FC(labels.shape[0], ‘layer2’) =>
predictions =>
SoftmaxCrossEntLoss(labels) =>
float loss =>
SGD(0.5);

return predictions;
}

The model keyword must be followed with a capitalized string name composed only of upper
and lowercase alphanumeric characters. The model definition cannot index individual matrices
and therefore cannot do manipulations of individual floats. The model definition can use the pipe
operator and can pipe inputs into layers or variables. Variables must be a non-capitalized string
name composed only of lowercase alphanumeric characters and underscores. The model
definition can have a specific optimizer associated with it. Models can be nested; if a model is
called inside another model, the optimizer closest to that model is used. All layers called in a
model must be accessible by at least one optimizer. All variables in a model are public and can
be called in the run scope.

Batching
A batched input is defined as an input for which the first dimension represents a batch size. The
optional parameter batch_size determines whether the model should treat any parameters
marked with the batch keyword as a batched input. If the programmer passes a batch_size
which is larger than the shape of the actual input, we will default to using the entire input. If
batch_size does not equal zero, at least one model parameter must have the batch keyword.
batch_size is a reserved parameter name and cannot be reused.

Run
The run section of an Onion program is the entry point for program runtime. The run definition is
where IO and graph construction occur. The run section therefore acts as the entryway for data
to interact models and provides control flow to indicate how the model should be treated. The
run section also acts as the exit for data from models. To complete the MNIST example, an
MNIST run section is provided below:

run(smatrix args) {

images = FileRead(<path>);
labels = FileRead(<path>);
model mnist = MNIST(images, labels);

train {
for (int i; i < 1000; i = i + 1) {

mnist(images, labels);
Print(‘Step: ’, i);
Print(‘Loss: ’, mnist.loss);

}

}

predictions = mnist(images, labels);
Print(‘Predictions: ’, predictions);

}

The run keyword must take in a smatrix args representing any command line arguments
passed into the Onion program. The run definition can do file IO using the FileRead and
FileWrite functions. The run definition can initialize graphs using model initialization syntax. The
run definition can use the train {} keyword. The run definition cannot call individual layers, index
matrices, or use the pipe operator.

Graph Creation
When a model is initialized, it passes in the data that it is expecting to use during the actual
model run. The data is discarded, but the relevant (i.e. accounting for batch_size) shape is
taken for an input to a model. This shape is then used to construct all relevant components of
the graph on a preliminary run through. Thus, though graph shapes are not defined at compile
time, they are necessarily defined before the user can make use of the model.

