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Introduction 
In this document we propose Onion, a new language developed to make the design and 
implementation of deep learning models easier and more intuitive. Deep learning is an 
extremely popular field that is quickly becoming a mainstay of major tech companies like Google 
and Amazon. Deep learning models consistently beat state of the art algorithms in many fields. 
Deep learning models are mostly created with libraries built on top of Python, e.g. Tensorflow. 
Though powerful, these libraries lack visual clarity and are in general cluttered by other 
unnecessary features coming from a general purpose language like Python. Onion is a 
language built from the ground up specifically for deep learning models that emphasizes visual 
clarity and minimalism. We believe Onion can help deep learning experts program deep 
learning models the way they think about deep learning models, leading to fewer errors and less 
programming time. 
 
Onion aims to be a layers-based library like Slim and Keras, optimized for complex deep 
learning models. Onion optimizes for deep learning through Onion’s unique syntax: almost 
everything in the language is defined as a layer (processing) or as an array (data). The 
minimalist nature of the language makes it extremely easy to quickly define layers that stack 
into full, complex deep learning models. The language also allows users to quickly identify how 
a data flows through a model (i.e. what components of a piece of code are processing and what 
components are data).  

Types 
 

Type Description Example 

int  Integer Data Type int i = 5 

float  Float Data Type float f = 5.0 

bool Single byte boolean (0 or 1) true 

string String Data Type “Hello world” 

fmatrix nxn float matrix type - default fm = fmatrix([10, 10], 1) 

imatrix  nxn integer matrix type imatrix im = imatrix([10, 10], 1) 

smatrix  nxn string matrix type smatrix sm = [[‘hello’], [‘world]] 



Lexical Conventions 

Identifiers 
Variables must begin with a lowercase character, and may contain only a combination of 
lowercase characters and underscores (“_”). “_” is not a valid variable name. Variables should 
be snake case. 
Models and Layers must begin with a capital character, and may only contain a combination of 
capital and lowercase layers. Models and Layers should be camelcase. 

Keywords 

Keyword Description 

for For loop 

if If-elif-else block 

elif  If-elif-else block 

else If-elif-else block 

return Return function expression 

no  Void return type 

model Declare a model object 

layer Declare a layer object 

optimizer  Declare an optimizer layer object 

func Declare a function 

batch Declare a batch object 

trainable Declare a trainable object 

train Keyword used to indicate when a model is 
training 

 

Comments 
/* I am a comment */ 



/* 
And I am a blocky comment 

*/ 

Expressions 

Primary Expressions 
Identifier: Variable, function, and model names 
Constants: 
 

Constant Example 

int 5 

bool true or false 

float 5.0 

string “Hello world!\n”. Note how special characters 
are prefixed with a backslash, as in c. 

 

Unary Operators 
(-expression): defined for int and float. Evaluates to the negative value. 
(!expression): logical negation. Booleans only. 

Arithmetic Operators 
If either expr1 or expr2 is type float, arithmetic operators will cast the other expr to float and 
return a float. 
 
(expr1 + expr2): sum float or int, concatenate strings. 
(expr1 - expr2): substract floats or int.  
(expr1 * expr2):  multiply floats or int 
(expr1 / expr2): divide floats or int 
(expr1 % expr2): modulo ints 
(expr1 ** int expr2): exponentiation. Note expr2 must be an integer type 
 



Matrix Operators 

(matrix1 ^* matrix2):  matrix multiplication on fmatrices or imatrices  
(matrix1 ^.* matrix2):  hadamard product fmatrices or imatrices. Matrices must be same shape 
(matrix1^):  transpose 

Assignment Operators 
(expr1 = expr2): sets the value of expr1 equal to the value of expr2. Both expressions must be 
of the same type; Onion does not do implicit type conversion during assignment. 
(expr1 => expr2): sets the value of expr2 equal to the value of expr1 
See Syntax and Program Structure: Assignment for more details. 

Relational Operators (returns bool)  
(expr1 < expr2) less than 
(expr1 > expr2) greater than 
(expr1 <= expr2) less than or equal to 
(expr1 >= expr2) greater than or equal to 

Equality Operators (returns bool) 
(expr1 == expr2) equality 
(expr1 != expr2) inequality 

Logical Operators (returns bool) 
(expr1 and expr2) logical and 
(expr1 or expr2) logical or 

Syntax and Program Structure 

Assignment 

Normal declaration and assignment 
Declaration of variables is done by indicating the type of the variable followed by a variable 
name (in snake case). If the variable being defined is a fmatrix, it does not need to have a 
variable type, although it may. More explicitly: variables without a declared type are assumed to 
be of type fmatrix. We do this because fmatrix is expected to be the most common type.  
 



Assignment can be done with the equals  (=) operator. The Onion language uses left operand 
assignment, i.e. the identifier on the left of the equals operator is set to the expression on the 
right of the equals operator. For example: 
 

int x = 5; 
int y = 10; 
Print(x + y, “%d”); /* Prints out 15 */ 
 

x = [0.1, 0.2, 0.3] 
Print(x[0], “%f”); /* Prints out 0.1 */ 

Pipe assignment 
The model section of an Onion program can assign variables using the pipe (=>) operator. The 
pipe operator takes the value of the left operand and ‘pipes’ the value into the right operand 
(which may be on a newline). If the pipe operator is used with a Layer or Model component as 
the left operand, it will take the return of the Layer or Model (and throw an error if no return is 
defined). If the pipe operator is used with a Layer or Model as the right operand, it will pipe the 
value of the left operand as the first parameter for the Layer or Model on the right. For example: 
 
int x = 5; 
x => 
int y => 
Print("%d”); /* Prints 5 */ 

Matrix declaration 
Matrices can be declared with initial values using brackets. Each value in the matrix must be of 
the declared type. For example: 
 
imatrix x = [[0, 1, 2], [3, 4, 5]]; /* defines 2x3 int matrix */ 

Tuple declaration and assignment 
Tuples are a unique data type that are used exclusively for piping data into Layers and Models. 
A tuple syntax uses optional parens around comma separated variables of various types and 
shapes. For example: 
 
layer Sum((int x, int y, float z)) int { 

Print(z, “%f”); 
return x + y; 

} 

 
int x = 5; 



int y = 10; 
float z = 0.5; 
x, y, z => Sum();  /* parens are optional */ 
(x, y, z) => Sum(); 

Control Flow 

Statements and blocks 
Statements will be delineated by a semicolon: 
 
int statement = Statement(); 
 
Blocks will be delineated by opening and closing curly brackets. Variables are local to the 
nearest enclosing block. 
 
int a = 1; 
{ 

int a = 5; 
a => printf(“%d\n”);  /* prints 5 */ 

} 

a => printf(“%d\n”);  /* prints 1 */ 
 
The keyword for is used for both for-loops and while loops. 
 
for (int i = 0; i < 5; i = i + 1) {  /* for loop */ 

… 

} 

 

int i = 5 
for (i < 5) {  /* while loop */ 

… 

i = i + 1; 
} 

 
If-elif-else blocks are standard. You must delineate the statements with curly brackets {}. I.e. 
one-line if statements without curly brackets are NOT allowed. 
 

if (condition) { 
} elif (condition) { 
} else {} 
 



Anonymous functions 
Anonymous functions are only allowed within the scope of our predefined Map() function. They 
are limited to a single statement, and the result of that statement is used as the return value. 
Map can call a func if multiple statements are needed. Anonymous functions have the 
following syntax: 
 

(float f): f + 1.0  /* single statement anonymous fn */ 
(float f): foobar(f)  /* multi-statement anonymous fn */ 

Predefined Components 
 

Component Name Example 

print(str) print(“hello world!”); 

printf((arg1,arg2,...) , formated_str) printf((1,2), “%d and %d”);  
/*1 and 2*/ 

map(matrix, function) map( 
    [1,2,3], 
    (int i): i + 1 
) /* returns [2,3,4] */ 

 

A Note on Keywords 
The use of some keywords may not be immediately clear. This section serves to clarify how 
these keywords work. 

batch 
The batch keyword is used in the parameters list of models. The keyword indicates when an 
input parameter should be treated as batched, i.e. the model treats the first dimension as a 
collection for the data stored in the rest of the dimensions. batch can only be used as a tag for 
matrix types (fmatrix, imatrix, smatrix). Any parameter set with batch must have the same first 
dimension size. If at least one parameter is set with the batch keyword, the batch_size 
parameter can be set. batch_size indicates how many elements of the first dimension of a 
batch should be used per batch.  batch_size must be positive, less than the size of the batch 
input, and divide the batch input cleanly. A few examples:  
 
imatrix x = [[0, 1, 2], [3, 4, 5]]; 



 

model BatchExample(batch imatrix x) { 
/* x is treated here as a 1x3 matrix, i.e. 
   [0, 1, 2] and [3, 4, 5] are passed in separately and loss is  
   collected from the batch (the batch size defaults to the size of  
   the input, i.e. 2)*/ 

} 

 

model BatchSizeExample(batch imatrix x, int batch_size=1) { 
/* x is treated here as a 1x3 matrix, i.e. 
   [0, 1, 2] and [3, 4, 5] are passed in separately and loss is  
   collected from the batch, in this case from each input */ 

} 

 

model NonBatchExample(imatrix x) { 
/* x is treated here as a 2x3 matrix, all of the data is passed 
   together */ 

} 

trainable 
The trainable keyword is used to indicate which variables in a layer can be modified by 
optimizers (i.e. can be changed by model training). Any variable that is tagged with trainable 
can be accessed by optimizer layers. The trainable keyword can only be used for fmatrices 
and only used within layers. 

train 
The train keyword is used to indicate when a model is training. A model that is activated in 
train brackets runs any optimizer layers. A model that is activated outside of train brackets 
does not run the optimizer layers. train brackets can only be used in the run section of the 
Onion program.  

Program Sections 

Functions 
Functions are extremely basic numerical computation components in the Onion language. 
Unlike the other sections listed below, functions are entirely optional and do not need to be 
used. An example function may look something like this:  
 
func Max(int x, int y) int { 

if (x > y){ 
return x; 



} 
return y;  

} 
 
The func keyword must be followed by a capitalized string name composed of only upper and 
lowercase alphanumeric characters. After the parameter list, the function states its return type. If 
no return type is specified, it is assumed to be fmatrix. The function definition cannot use any 
of the unique Onion keywords or operators defined below -- it cannot use the pipe operator, the 
trainable keyword, the batch keyword; it cannot call other layers, models, or functions (and 
therefore cannot recurse); it cannot use the train tag or FileIO.  

Layers 
Modular abstraction is one of the core ideas of the Onion language. Layers are meant to be 
used for manipulating float values in fmatrices directly. They therefore allow users to define 
individual components of a network that can be inserted and reused throughout a model 
definition. As with functions, layers must state their return type after the parameter list. If no 
return type is provided, fmatrix is assumed. Relu layers and FC layers are both defined below.  
 
layer Relu(inputs) { 

Map(inputs, lambda x: Max(x, 0)); 
return inputs; 

} 
 
layer FC(inputs, int output_dim, [, str name]) { 

trainable weights = fmatrix([inputs.shape, output_dim], 1);  

return inputs ^* weights; 
} 

 
The layer keyword must be followed with a capitalized string name composed only of upper 
and lowercase alphanumeric characters. A layer definition cannot call another layer or model, 
and cannot use the pipe operator. A layer definition can index inputs and manipulate individual 
float values. A layer definition can use the trainable keyword to signify the creation of graph 
variables, but cannot use the trainable keyword more than a single time. Any layer definition 
can use the optional ‘name’ parameter to define a layer name for use in the run section of the 
graph; and ‘name’ cannot be used as the name of a parameter. Layer variables are not public; 
only the return of the layer can be accessed. 

Optimizers 
Onion also defines a subset of layer objects, called optimizers. Declaring an optimizer layer is 
syntactically identical to normal layers, only we replace the layer keyword with optimizer: 
 
optimizer SGD(float loss, float step_size) {...} 
 



Every composite model, i.e. a model including all its nested models (if any), must include an 
optimizer. The optimizer layer implicitly has access to all the trainable variables used by the 
other layers in the model. This allows Onion to update trainable variables without the user 
explicitly passing them as parameters. 

Models 
Models represent the flow of data from one layer to the next. A model does not define 
computation; rather, it lays out how computational units (i.e. layers) interact with one another. 
The model is therefore composed of layers. An example MNIST model may look something like 
the following: 
 
model MNIST([batch] inputs, [batch] labels [, int batch_size = 10]) {  

inputs => 
FC(64, ‘layer1’) => 
Relu() => 
FC(labels.shape[0], ‘layer2’) => 
predictions => 
SoftmaxCrossEntLoss(labels) => 
float loss => 
SGD(0.5); 

return predictions;  
} 

 
The model keyword must be followed with a capitalized string name composed only of upper 
and lowercase alphanumeric characters. The model definition cannot index individual matrices 
and therefore cannot do manipulations of individual floats. The model definition can use the pipe 
operator and can pipe inputs into layers or variables. Variables must be a non-capitalized string 
name composed only of lowercase alphanumeric characters and underscores. The model 
definition can have a specific optimizer associated with it. Models can be nested; if a model is 
called inside another model, the optimizer closest to that model is used. All layers called in a 
model must be accessible by at least one optimizer. All variables in a model are public and can 
be called in the run scope. 

Batching 
A batched input is defined as an input for which the first dimension represents a batch size. The 
optional parameter batch_size determines whether the model should treat any parameters 
marked with the batch keyword as a batched input. If the programmer passes a batch_size 
which is larger than the shape of the actual input, we will default to using the entire input. If 
batch_size does not equal zero, at least one model parameter must have the batch keyword. 
batch_size is a reserved parameter name and cannot be reused.  



Run 
The run section of an Onion program is the entry point for program runtime. The run definition is 
where IO and graph construction occur. The run section therefore acts as the entryway for data 
to interact models and provides control flow to indicate how the model should be treated. The 
run section also acts as the exit for data from models. To complete the MNIST example, an 
MNIST run section is provided below: 
 
run(smatrix args) { 

images = FileRead(<path>); 
labels = FileRead(<path>); 
model mnist = MNIST(images, labels); 
 

train { 
for (int i; i < 1000; i = i + 1) { 

mnist(images, labels); 
Print(‘Step: ’, i); 
Print(‘Loss: ’, mnist.loss);  

} 

} 

 

predictions = mnist(images, labels); 
Print(‘Predictions: ’, predictions); 

} 

 
The run keyword must take in a smatrix args representing any command line arguments 
passed into the Onion program. The run definition can do file IO using the FileRead and 
FileWrite functions. The run definition can initialize graphs using model initialization syntax. The 
run definition can use the train {} keyword. The run definition cannot call individual layers, index 
matrices, or use the pipe operator.  

Graph Creation 
When a model is initialized, it passes in the data that it is expecting to use during the actual 
model run. The data is discarded, but the relevant (i.e. accounting for batch_size) shape is 
taken for an input to a model. This shape is then used to construct all relevant components of 
the graph on a preliminary run through. Thus, though graph shapes are not defined at compile 
time, they are necessarily defined before the user can make use of the model. 
 


