Facelab Language Reference Manual

Xin Chen (xc2409)
Kejia Chen (kc3136)
Tongfei Guo (tg2616)

Weiman Sun (ws2517)

October 16, 2017

Contents

1 Introduction

2 Types
2.1 Basicdatatypes e e e
2.2 Advanceddatatype e
3 Lexical Conventions
3.1 Identifiers
3.2 keywords ... e e e e
3.3 Literals e
33.1 integerliterals. L
33.2 doubleliterals L
333 matrix literals
334 stringliterals e
34 Comments e e e e e e e e e e e e e e
3.5 OPperators e e e
3.5.1 scalaroperators e e e
3.5.2 matriX OPerators e e e e e e e e e e e e
3.6 PUNCLUALOT v vt it e e e e e e e e e e e e

4 Syntax Notations

4.1 EXPressions i i e e e e e e e e e e e e e e e
4.1.1 Precedence and Associativity Rules,
4.1.2 Primary Expressions
4.1.3 Postfix EXpressions
4.1.4 Subscripts e
415 FunctionCalls
42 Declarations oL e e e
4.2.1 Typespecifiers
422 Matrix declarations
423 Functiondeclarations Lo

5 Standard Libraries Functions

5.1 0mage e e

52 O . o e
6 Sample Code

6.1 GCDAlgorithm e

6.2 ApplyaFilter

6.3 FaceRecognition

1 Introduction

Facelab aims to perform face detection, face recognition, filter applying and photo sticker adding
among other features which enable the target users to manipulate their portrait photos with ease
and accuracy. The basic syntax of this language largely resembles that of C++, excluding some of
the irrelevant and hard-to-implement details such as inheritance, template, etc. With the inclusion
of the matrix data type that is common to many scientific programming languages, it not only
facilitates image processing related computation, but also grants users the ability to manipulate
photo on a pixel scale and allows users the freedom to define and tailor their own filter to individuals
preference. Moreover, by having OpenCV linked at the compiling stage, it provides access to
some of the state-of-art face detection and face recognition algorithms without having to install the
whole libraries of OpenCYV, learning it and its companying auxiliary libraries(such as Eigen library)
functionalities. A combination of these afore-mentioned features could considerably simplify real-
life tasks such as adjusting photo brightness and contrast, batch-editing photos, auto-applying facial
pixelization, and so on.

2 Types

2.1 Basic data types

Table 1: basic data types

type name description
int 32-bit signed integer
double 64-bit float-point number
bool 8-bit boolean variable
string array of ASCII characters
matrix | data structure storing bool/ints/doubles of arbitrary size

2.2 Advanced data type

Table 2: advanced data type
type name description
image data structure storing 3 matrices

3 Lexical Conventions

3.1 Identifiers

Identifiers consists of one of more characters where the leading character is a uppercase or low-
ercase letter followed by a sequence uppercase/lowercase letters, digits and possibly underscores.
Identifiers are primarily used variable declaration.

3.2 Kkeywords

The keywords listed below are reversed by the language and therefore will not be able to be used
for any other purposes (e.g. identifiers)

Table 3: keywords

type name description
for typical for loop follows the syntax for(init; cond; incr) stat;
while typical while loop follows the syntax while(cond) stat;
if typical if-elseif-else condition clause follows the syntax
elseif if(cond) stat; elseif(cond) stat; else stat;
else
break ending the iteration of the nearest enclosing for/while loop
continue ending current iteration of a for/while loop and starting with the next iteration
return ending current function execution and return a value or multiples values
func signal word for function definition follow the syntax func name(type var, ...) stat;
true boolean type constant
false boolean type constant
int 32-bit signed integer
double 64-bit float-point number
bool 8-bit boolean variable
string array of ASCII characters
matrix data structure storing bool/ints/doubles of arbitrary size
image data structure storing 3 matrices

3.3 Literals

3.3.1 integer literals

A sequence of one or more digits representing an un-named(not associated with any identifier)
integer, with the leading digit being non-zero (i.e. [1-9][0-9]*)

3.3.2 double literals

A sequence of digits seperated by a ’.” representing an un-named float-point number (i.e. [0-9]*.[0-
91%)

3.3.3 matrix literals

A sequence of digits enclosed by a pair of square brackets, and delimited by commas and semi-
colons, representing an un-named 2-D matrix.

e.g. [1,2; 3,4]:[; Z]

3.3.4 string literals

A sequence of character enclosed by a pair of double quotation marks representing an un-named
string. (i.e. " “.*” §)

3.4 Comments

Table 4: comments

/* comment */
// comment

block comment where comment could contain newline

line comment without newline

3.5 Operators

3.5.1 scalar operators

Table 5: scalar operators

= assignment operator
+, -, %,/ arithmetic operators
% reminder operator
=, ==, >, >=, <, <= relational operators
, &&, ! logical operators(OR, AND, NOT)

3.5.2 matrix operators

Table 6: matrix operators

$ pre-defined operator whose syntax follows image $ filter, which applies filter to image

assignment operator
arithmeitc operators for matrix
matrix dot product
subscript operator
subscript j-th column
subscript i-th row

3.6 punctuator

Semicolons at the end of each statement perform no operation but signal the end of a statement.

Statements must be separated by semicolons.

4 Syntax Notations

4.1 Expressions

4.1.1 Precedence and Associativity Rules

Table 7: Operator Precedence and Associativity

Tokens (From High to Low Priority) | Associativity
01l L-R
! R-L
$ L-R
*1 % L-R
+- L-R
<<= > >= L-R
=== L-R
& L-R
| L-R

4.1.2 Primary Expressions

Identifiers, literals and parenthesized expressions are all considered as “primary expressions”.

4.1.3 Postfix Expressions

Postfix expressions involving subscripting and function calls associate left to right. The syntax for
these expressions is as follows:

postfix-expression: primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-list)
argument-expression-list: argument-expression

argument-expression-list, argument-expression

4.1.4 Subscripts

A postfix expression followed by an expression in square brackets is a subscript. Usually, the
postfix expression has type matrix. For a 1-D matrix, the expression has type int. For a 2-D matrix,
the expression would be two values separated by a comma, the value could be an integer or a colon.

4.1.5 Function Calls

A function call is a postfix expression followed by parentheses containing a (possibly empty)
comma-separated list of expressions that are the arguments to the function.

4.2 Declarations
4.2.1 Type specifiers

int

double

bool

string

matrix

image

Each variable declaration must be preceded by a type specifier which tells what type is going to be
used to store that variable.

4.2.2 Matrix declarations

example:

matrix name = [a,b,c;d,e,f;qg,h,1i]

The matrix specifier define the variable as a matrix type. In the example, a—i are of type int or
double. The value is surrounded by a pair of brackets. semi-colons are to separate different rows,
where in every row, elements are separated by commas.

4.2.3 Function declarations

example:

func funcName (T argl, ...) {...}

To define a function, use the keyword func to declare this is a function declaration. Following by
user defined function’s name. In the parentheses it defines how many arguments it can be passed
in and what types are they. Therefore in the calling environment, the calling statement must match
the function’s definition.

5 Standard Libraries Functions

5.1 image

Table 8: Standard Libraries Functions for image

Functions Description
func load(String image_path) load image from a file
func save(String folder_path) save image in the folder

func recognition(String folder_path, String image_path)

recognize the face in the image by
training images from a given folder

func detection(String image_path) detect whether a image includes faces

func drawRect(String image_path, int x, int y, int width, int height) draw a rectangle of

given size at given position

func drawText(String image_path, string text, int x, int y) draw given string at given position
func pixelize(String image_path, int x, int y, int width, int height) apply pixelization at given position

5.2 1/0

Table 9: Standard Libraries Functions for I/O
Functions Description

func print(String str) | print a string that is passed into the function when calling the print function

6 Sample Code

In FaceLab, every statement must end with a semicolon ;. Code blocks in control flow statements
(if, else, elseif, for, while) must always be enclosed in braces. Braces make the scope of the block
statement more straightforward. The program begins from top down, functions don’t have return
types, but can return any type of variables in the function. Every function has an argument that
takes 0 or more variables, surrounded by parentheses. When calling a function, the number of
variables passed into the calling function must match its arguments and corresponding types. If a
return object from a function is being stored in a variable, the variable type must match the type of
the return object from the function.

6.1 GCD Algorithm

func gcd(int m, int n) {
//calculate gcd of two integer number
while (m>0)

int ¢ = n % m;
n = m;
m = c;

return n;

6.2 Apply a Filter

image picl = load(../"xxx.jpg"); // built in function to load an image
matrix sharpen =

[0,-1,0;

-1,5,-1;

0,-1,071;

//define a filter.
image pic2 = picl $sharpen; // apply filter to image.
save ("../yyy.Jjpg", pic2); // built in func to save an image to file

6.3 Face Recognition

string label; // define label of the given person.

label, x, y, w, h = recognition("../folder", "../xxx.Jjpg");

// train images from a given folder, recognize images from target path,
// return the label of the recognized person and a rectangle around the

// face, (x, y, w, h) stand for coordinates, width and height of the rectal
image picl = load("../xxx.]jpg");

picl = drawRect (picl, x, vy, w, h);

// draw a rectangle around the face

picl = drawText (picl, identity, x + 10, y + 10);

// draw the label around the face

save ("../yyy.Jjpg", picl);// built in func to save an image to file

