
Floor Plan Language (FPL)
Language Reference Manual

Xinwei Zhang (xz2663) Manager
Chih-Hung Lu (cl3519) Language Guru
Dondong She (ds3619) System Architect
Yipeng Zhou (yz3169) Tester

1. Lexical Elements

1.1 Identifiers

Identifiers are strings used for naming different elements, such as variables, functions,
and the words "if" in control flow, etc. The identifiers are consist of letters, digits, and
underscore ‘_’, and the letters are case sensitive. Each identifier should always start
with a letter. These rules are described by the definitions involving regular expressions
below:

 identifier := (letter) (letter | digit | underscore)*
 digit := '0'-'9'

 letter := ('A'-'Z') | ('a'-'z')
 underscore := '_'

1.2 Keywords

int double string char bool if

else for main void null INF

fun struct true false put rotate

Wall Bed Desk Door while break

continue return dirc Rectangle Circle

1.3 Literals

\” Insert a double in the string

\\ Insert a backslash in the string

\n Insert a newline in the string

\t Insert a tab in the string

+INF Positive infinite number

-INF Negative infinite number

true Boolean true value

false Boolean false value

1.4 Delimiters

Parentheses () Enclose arguments for a function

Braces [] Enclose indexes for an array

Brackets {} Array initialization and assignment

Commas , Separate different function components

Semicolon ; Terminate a sequence of code

Curly
Braces{...}

Enclose function/struct definitions and code in if statements/ for
loops

Periods . Access fields of an object

Whitespace Separate tokens. Include spaces, tabs, newlines

2. Data types
PLT maintains primitive data types like int, bool for general computation and other
built-in data types like Wall, Bed, Desk to represent some basic element in a floor plan
graphic. User can also define their own structure in PLT like C to satisfy their specific
needs.

2.1 Primitive data types

int a 32-bit unsigned integer

char a single ASCII character

bool a boolean variable (True and False)

string a null-terminated sequence of characters

dirc a non-negative integer value representing direction ranging from (0~359)

2.2 Built-in data types

Wall a data structure to demonstrate a wall on floor plan, take two diagonal
coordinates as parameters, e.g Wall(x1, y1, x2, y2)

Bed a data structure to demonstrate a bed on floor plan, take two diagonal
coordinates as parameters, e.g Bed(x1, y1, x2, y2)

Desk a data structure to demonstrate a desk on floor plan, take two diagonal
coordinates as parameters, e.g Desk(x1, y1, x2, y2)

Rectangle a data structure to demonstrate a basic rectangle on floor plan, take two
diagonal coordinates as parameters, e.g Rectangle(x1, y1, x2, y2)

Circle a data structure to demonstrate a basic circle on floor plan, take one
coordinate as center and a positive integer as radius.

2.3 User-defined data types
User can define their own data structure to generate special element in data floor such
as a fancy sofa, a square toilet. Here is an example,

Struct SquareToilet{

Rectangle seat = Rectanlge(0, 0, 3, 3)
Rectangle cistern = Rectangle(0, 3, 3, 4)

}

3. Expression and Operators

3.1 Expressions

Expressions are made of at least one operand and zero or more operators. Innermost
expressions are evaluated first and the priority of an expression is determined by
parentheses. The direction of evaluation is from left to right.

3.2 Operators

Operator Description Associativity

! Logical Not Right to Left

= Assignment

* / % Multiplication, Division,
Remainder

Left to Right

+ - Addition, Subtraction

== Equality

!= Not equal

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

&& Logical AND

|| Logical OR

Punctuation Purpose

; Used to end a statement

{ } Used to enclose functions, while and for loops, and if
statements. In other words, they are used to delineate the

scope of blocks of code in the program.

() Used to specify and pass arguments for a function and the
precedence of operators. Also used to enclose conditions in
for and while loops and if statements.

, Used to separate function arguments

“ ” Used to declare a variable of string data type

/* */ Block comment

4. Control Flow

if (expression) {
 statement
}

The expression is evaluated and if it is
non-zero, the statement is executed

if (expression) {
 statement
} else {
 statement
}

Second substatement is executed if the
expression is 0. As usual the ‘‘else’’
ambiguity is resolved by connecting an
else with the last encountered elseless if.

while (expression) {
 statement
}

The substatement is executed repeatedly
so long as the value of the expression
remains non-zero. The test takes place
before each execution of the statement.

for (expression ; expression ; expression) {
 statement
}

The first expression specifies initialization
for the loop; the second specifies a test,
made before each iteration, such that the
loop is exited when the expression
becomes 0; the third expression typically
specifies an incrementation which is
performed after each iteration.

break; Causes termination of the smallest
enclosing while, do, for, or switch
statement; control passes to the
statement following the terminated
statement.

continue; Causes control to pass to the
loop-continuation portion of the smallest
enclosing while, do, or for statement; that
is to the end of the loop.

return; No value is returned.

return expression ; The value of the expression is returned to
the caller of the function.

5. Functions
5.1 Function Definition

In FPL, the definition of a function consists of a keyword “fun”, a return type, a function
identifier and some parameters and their types. Then, there is a block of code enclosed
by curly braces. An example of a function definition is like this:

fun int multiply(int a, int b){return a*b;}

5.2 Function Call

A function call in FPL is the functiong’s identifier followed by its params enclosed by
parentheses. An example of a function call is like this:

multiply(2,5);

6. Build-in Functions

API

Name Function expression Description

put put(object, x, y) Render the object to the
specific position

rotate rotate(object, direction) Rotate the object with the
specific direction

7. Example

7.1 Sample code

/* user defined struct */
Struct BiggerSofa{

Rectangle c = Rectangle(0, 0, 3, 2);
Circle c = Circle(1, 1, 1);

}

/* used defined function */
fun void livingRoomMake(){

/* invoke user-defined struct */
Struct BiggerSofa bs;
rotate(bs, 180);
put(bs, 8, 15);

for(int i = 0; i < 4; ++i){

 Chair chair = Chair(0, 0, 2, 2);
rotate(chair, 180);
put(chair, 8, 17 + 2*i);

 }

Desk desk = Desk(0, 0, 2, 6);
put(desk, 6, 12);

}

int main(){

Wall wall = Wall(0, 0, 10, 1);
/* top wall */
put(wall, 0, 19);

/* bottom wall */
put(wall, 0, 0);

 Wall sideWall = Wall(0, 0, 1, 20);

/* left wall */
put(sideWall, 0, 0);

/* right wall */
put(sideWall, 19, 0);

 Wall middleWall = Wall(0, 0, 1, 8);
/* middle wall0 */
put(middleWall, 5, 11);

/* middle wall1 */
put(middleWall, 5, 0);

/* invoke user-defined function to build the living room */
livingRoomMake();

 Door door = Door(0, 0, 3, 1);
put(door, 12, 0);

 Bed bed = Bed(0, 0, 3, 3);
put(bed, 0, 12);

 Window window = Window(0, 0, 3, 1);

put(window, 2, 19);
put(window, 6, 19);

 return 0;

}

7.2 Rendered floor plan

