

The English Language Language:
A Document Analysis System

Language Reference Manual

Emily Bau, eb3029, Project Manager
Nivita Arora, na2464, Language Guru
Michele Lin, ml3706, System Architect

Candace Johnson, crj2121, System Architect
Rabia Akhtar, ra2805, Tester

Introduction 2

Lexical Elements: 2

Data Elements 3

Functions 3

Control Flow Statements: 4

Sample Programs 5

1. Introduction:
The English Language language solves problems specific to document manipulation and data
extrapolation. People who would like to write scripts that analyze multiple documents quickly
and can cross compare documents will find it it hard in traditional languages. Our language
provides core file manipulation operations and storage structures and allows for libraries that
mine statistics and check for plagiarism. This could especially be useful for teaching and
publishing related activities.

Our language allows for streamlining of calculating most used words, most popular subject, time
a human takes to read this file, and other useful information related to one text file. It will also
help streamline comparing lists of files for searching for relevant keywords and other
comparison functions.

2. Lexical Elements:
a. Identifiers

i. Identifiers are for naming Docs and other data types. They are defined by
at least one lowercase letter and can be followed by any combination of
letters, numbers, and underscores.

b. Reserved KeyWords:

int boolean float

if else elif

while for string

doc print toLower

docPlus import

c. Literals
i. Integer literals

1. Series of one or more digits from 0-9
ii. Float literals

1. Series of digits followed by a ‘.’ character and another series of
digits. Must either have digits preceding or following the ‘.’

iii. Boolean literals
1. Value of either ‘true’ or ‘false’

iv. String literals
1. Series of one or more characters

d. Operators

+, -, *, /, %, arithmetic integer operators
==, <, >, <=, >= numerical integer operators
||, &&, ! logical operator
= assignment

e. Delimiters
i. Parentheses

1. Used to contain arguments in function calls as well as to ensure
precedence in expressions

ii. Semicolon
1. End of statement

iii. Curly braces
1. Used to contain enclose block logic in conditionals and loops as

well as to contain code in functions
iv. Commas

1. Used to separate input in function calls
f. Whitespace

i. Whitespace is only used to separate tokens
g. Comments

i. Single line comments are started with // and multiple line comments are
started with /* and */

3. Data Elements
1. Primitive Data Types

 Integers: Most numbers will be declared as type int (int x = 5)
 Floats: Floating point numbers will be declared as type float (ex: float x = 2.3)
 Booleans: Boolean values will be declared as type bool and can be True or False

2. Non Primitive Data Types

a. Strings (string)
i. Strings will be defined by type string. They will be defined with two double

quotes “ “. ex(string intro = “Hello World”)
ii. string.size() - The number of characters in the string
iii. string.append(string a) - Append another string to the end of the string
iv. string.equal(string a) - Check if both strings are equal
v. string.get(int i) - get the character at index i

b. Documents (doc)
i. Document stores the contents of a passage through a string
ii. doc.content - retrieves the string that contains the contents of the

document
4. Functions

1. Built in Functions

print() Function to print any data type

toLower() Changes an uppercase word to lowercase

2. Library Functions

a. We will have an importable libraries that users can incorporate in their programs.
This library will be called docPlus which will take in a Doc in the constructor and
will perform analysis functions on the Doc. The following are functions within the
docPlus library.

docPlus.getKeywords(int numberOfKeywords) Return the most frequently used words in a
document

docPlus.getCount(string word) Returns number of times words occur in doc
object

docPlus.compare(doc a, doc b,) Compares all documents and returns percent
of documents matching other documents.

3. User-Defined Functions

a. Functions are specified by
return_type function_name(args) {

… return return_type;
}

b. To call this function: function_name(args)

5. Control Flow Statements:
Conditional Statements:

If(<bool>) {
<expr>

 } Elif(<bool>){
 <expr>

 }

Else{
 <expr>

Loops:

For(<bool>) {
 <expr>

}
While(<bool>) {

<expr>
}

6. Sample Programs

import docPlus
boolean plagarismCheck(doc DocA, doc DocB){
docPlus EssayA = new docPlus(DocA);
docPlus EssayB = new docPlus(DocB);
string [] keyWordsA = EssayA.getKeywords(10);
string [] keyWordsB = EssayA.getKeywords(10);
int totalSimilar = 0;

for(int i =0; i<9; i++){

for(j=0; j<9; j++){
if(keyWordsA[i]==keyWords[j]){

totalSimilar++;
} }

}

if(totalSimilar >7){
return True;

}
return False;

}

doc findRelevant (docPlus [] docs, string keyword) {

doc mostRelevant;
int keywordCount = 0;
for (int i = 0; i < docs.length; i++) {

if (docs[i].getCount(keyword) > keywordCount) {
mostRelevant = docs[i];

}
}
return mostRelevant;

}

