
CompA Language

Language Reference Manual

Manager: Xiping Liu (xl2639)

Language Guru: Jianshuo Qiu (jq2253)

System Architect: Zhanpeng Su (zs2329), Tianwu Wang (tw2576)

Tester: Yingshuang Zheng (yz3083)

Contents

1. Introduction

2. Types

 2.1 Basic Data Types

3. Lexical Conventions

 3.1 Identifiers

 3.2 Keywords

 3.3 Constants

 3.4 Comments

 3.5 Operators

 3.6 Precedence

4. Syntax Notation

 4.1 Expressions

 4.1.1 Primary Expressions

 4.1.2 Postfix and Prefix Expressions

 4.1.3 Matrix References

 4.1.4 Function Calls

 4.2 Declarations

 4.2.1 Type Specifiers

 4.2.2 Matrix Declarations

 4.2.3 Function Declarations

 4.3 Initialization

 4.3.1 int

 4.3.2 double

 4.3.3 bool

 4.3.4 string

 4.3.5 matrix

 4.4 Statements

 4.4.1 Expression Statement

 4.4.2 Compound Statement

 4.4.3 Selection Statement

 4.4.4 Iteration Statement

5. Standard Library Functions

 5.1 Math

 5.2 Vectors

 5.3 Matrix

 5.4 I/O

1. Introduction

Welcome to the CompA reference manual! Our team members’ shared experience in

complex number related mathematical computations motivated us to create this language.

Complex numbers are widely used in areas like signal processing, quantum mechanics, and

multi-dimensional data analysis. These computations are usually complicated and

time-consuming. Hence, CompA is targeted to solve those problems efficiently and correctly.

2. Types

 2.1 Basic Data Types

Types Examples

integer int x = 1

int y = 0

float float x = 3.56

float y = 70.0

complex number cx x = (5, 7)

cx y = (3, 8.0)

cx z = (2.0, 9)

boolean bool x = true

bool y = false

string string x = “hello world”

matrix mx x = [2, 3]

mx y = [2, 3.0; 5.8, 7]

mx z = [2, (5, 3); (7, 6), 8.8]

The 6 data types in the above table are all the built-in data types in our language. Our

language is statically-typed. Namely, you must declare the data types of your variables before

you use them.

According to the examples in the above table, declaring variables in our language is fairly

simple. Declaration of integer, float, boolean, and string is similar to mainstream

programming languages such as C and Java. The specification of declaring complex number

and matrix is shown as follows.

We use a 2-tuple surrounded by parentheses to declare complex number, where the first tuple

is real part, the second tuple is imaginary part. Both parts can be either integer or float. For

matrix, we include all entries in square brackets. Inside the square brackets, rows are

separated by semicolon, while entries of the same row are separated by comma. Integers,

float numbers, and complex numbers can be put into the same matrix.

There are also some built-in constants in our language.

Constant Name Mathematical Meaning

PI π approximately 3.14159

INF ∞

E Euler's number approximately equals to

2.71828

3. Lexical Conventions

 3.1 Identifiers

Identifiers are tokens that used to store data of dynamic type. Identifiers must start

with lowercase letter, followed by any combinations of numbers, letters and

underscores.

 3.2 Keywords

Keywords are reserved identifiers that cannot be modified by others. Below are the

keywords used in the language:

int float cx bool string mx if else for

while break continue return print true false

 3.3 Constants

Constants are pre-defined values for easier access by users. Some examples:

PI INF E

 3.4 Comments

Comments are similar to C language, in which /* starts comments and */ ends

comments. Anything between /* and */ will be ignored by the syntax. Comments

cannot be nested.

 3.5 Operators

There are three sets of operators: logical operators, complex numeric operators and

matrix operators. There will be some overlap on numeric and matrix operators.

Logical Operators Operation Type

== (is equal to), < (is less than), > (is larger
than) , <= (is less than or equal to), >= (is
more than or equal to)

numeric relational

&& (Logical AND), || (Logical OR), !
(Logical NOT)

logical

Assume all numbers written in the form z = a + ib which we call it regular form. For all

real numbers, b is simply 0.

Complex Number
Operators

Operations Examples

+ addition z1 + z2 = (a + c) + i(b + d)

- substraction z1 - z2 = (a - c) + i(b - d)

* multiplication z1 * z2 = (ac - bd) + i(ad + bc)

/ division z1 / z2 =((ac - bd) + i(bc - ad)) / (c^2 + d^2)

^ power z^n = (a + ib)^n

exp() exp power exp(z) = e^a(cos(b) + i(sin(b)))

conj() conjugate conj(z)= a - ib

| | absolute value |z| = (a^2 + b^2)^(1/2)

e scientific
notation

5.12e-31 =5.12*10^(-31)

 Our language also supports matrix operations:

Operators Operations

+ addition

* multiplication

tp() transpose

dt() determinant

tr() trace

<x | y> inner product

m[rowNum, columnNum] matrix reference

 3.6 Precedence

The numeric calculation precedence is just like normal mathematical calculations.

With introduction of matrix into the language, matrix calculations will be the highest

precedence

4. Syntax Notation

 4.1 Expressions

 4.1.1 Primary Expressions

Primary Expressions are the most basic expressions which make up more

complex expressions. These include identifiers, constants, strings, or

expressions in parentheses.

 4.1.2 Postfix and Prefix Expressions

Postfix expressions in CompA include the following:

expression[expression]

expression(parameter-list)

expression++

expression--

And prefix expressions include the following:

++expression

--expression

 4.1.3 Matrix References

 Matrix elements are referenced through postfix expressions of the form:

expression[expression]

where the first expression is the identifier of an initialized matrix. In the case of a

1-dimensional matrix, the expression in brackets is simply an integer value. For a

2-dimensional matrix, the expression in brackets is a pair of comma separated

integer values.

 4.1.4 Function Calls

Function calls are postfix expressions of the form:

expression(parameter-list)

where expression is an existing function identifier and the optional parameter-list

consists of comma-separated expressions that are passed as the function

parameters.

 4.2 Declarations

 4.2.1 Type Specifiers

● void

● String

 declaration of a string

● cx

 declaration of a complex number

● boolean

 declaration of a boolean variable

 4.2.2 Matrix Declarations

 mx[# of rows, # of columns] name

 Define a matrix/vector by specifying its name. We use `;` to separate

 rows in matrix, so if only 1 line, then it is a vector. Otherwise if it has more than one

 line, then it is a matrix. We specify the size of matrix by specifying the number of rows

 and number of columns of the matrix.

 4.2.3 Function Declarations

 T name (T arg, …) { statements }

 The function declaration above specifies the return type of the function which is denoted

 as T. It also specifies the name of the function and the arguments that the function take.

 Curly braces are used to group statements of the function.

 4.3 Initialization

 4.3.1 complex number

 We can assign a complex value to a complex variable using “=” while declaring it.

 If we do not do that, the complex variable will be (0, 0) by default.

 Example:

 cx c1 = (0, 0);

 cx c2 = (1.0, 2.3);

 4.3.2 boolean

 Use “=” to assign a boolean variable true/false while declaring it. It is by default false.

 Example:

 boolean a = true;

 4.3.3 string

 Use “=” to assign a string enclosed by double quotes “” while declaring it. It is by

 default an empty string “”.

 Example:

 string str = “CompA”;

 4.3.4 matrix

 Use “=” to assign a matrix representation enclosed by [] while declaring it. Its default

 initialization depends on the type of its contents. If it is of type complex numbers, then by

 default it will contain complex number (0, 0) for each of its entry.

 Examples:

 mx<cx>[1,4] m1 = [(1, 1), (1.1, 0), (0, 0), (-1, -4)];

 mx<cx>[2,1] m2 = [(1, 0); (2, 9.2)];

 4.4 Statements

 4.4.1 Expression Statement

Each expression statement consists of only one expression (introduced in 4.1, usually

an assignment or function call). In CompA, each expression statement is followed by

a semicolon:

expression;

The compiler will report error if there is no semicolon after an expression statement.

However, it is OK if the expression statement before a semicolon is an empty string.

4.4.2 Compound Statement

A compound statement is a sequence of statements (which may be a compound

statement) enclosed in braces. A compound statement is of the form:

{

 expression;

 expression;

 { expression; expression;}

}

is a compound statement. There is no semicolon following a compound statement. If a

variable is declared within a compound statement, the scope of that variable is only

limited within the corresponding compound statement.

4.4.3 Selection Statement

The selection statement controls the program flow according to the boolean value of

certain conditions. The keywords for selection statement in CompA are if, and else. A

selection statement is of the form:

if(condition){

 then-statements

}else{

 else-statements

}

Here, condition must be a boolean expression. If condition is evaluated to be true, the

then-statements run. If condition is evaluated to be false, the else-statements run. In an

if statement that is not followed by else, if condition is true, the then-statements run.

Otherwise, the program control flows to next statement after the if statement. Both

then-statements and else-statements are a compound statement.

4.4.4 Iteration Statement

Iteration statements are used to create loops and execute embedded statements

multiple times. The keywords used in iteration statements in CompA are for, while,

break, and continue. The form of a for-loop statement is in this way:

for(initializer; condition; iterator){

 embeded statement;

}

Here, the initializer sets the initial condition, which is an assignment. The statement

for the initializer runs only once. The condition provides a boolean value to decide if

the loop continues or finishes. The iterator updates what changes after each iteration.

The iterator can be an assignment (including prefix/postfix increment/decrement), or

an invocation for a function. The form of a while-loop statement is in this way:

initializer;

while(condition){

 embedded statement;

 iterator;

}

where initializer, condition, and iterator are defined the same as in for-loop statement.

Break is used to stop the iteration and make the program flow to next statement.

Continue is used to jump to next iteration without executing the rest of the statements

in the embedded statement after continue. Break and continue are usually placed

inside a selection statement in the loop.

5. Standard Library Functions

5.1 Math

Function Prototype Description Return Value Example

exp(int/float/cx a,

int/float/cx b)

Calculate the

exponential of a

to the b.

int/float/cx result int result = exp(1,2)

float result = exp(1.9,2)

cx result = exp((1,2),2)

cos(cx z) Calculate the

cosine of z.

cx -cos(zi)=cosh(z)= A

sin(cx z) Calculate the

sine of z.

cx -sin(zi)=sinh(z)= A

5.2 Complex Number

Function Prototype Description Return Value Example

euler(cx a) Change the form

of a complex

number into a

exponential

form.

mx result

[magnitude,angle]

mx a = euler((1,3))

5.3 Matrix

Function Prototype Description Return Value Example

addRow(mx m, int

rowNum, mx row)

Insert a row to

matrix m at

rowNum row

with a content

row.

mx n mx n= addRow(m,3,

[0,8,3])

mx

n=addRow(m,3,[2.3,1.8,

1.9])

mx

n=addRow(m,3,[(1,-9),(

2,-8)])

addCol(mx m, int

colNum, mx col)

Insert a column

to matirx m at

colNum with a

content of col.

mx n mx n=addCol(m,3,

[0,8,3])

mx n=

addCol(m,3,[2.3,1.8,1.9]

)

mx

n=addCol(m,3,[(0,5),(32

.5,0),(1,-9)])

colLen(mx m) Shows how

many columns

are there in the

matrix m.

int int colNum= rowLen(m)

rowLen(mx m) Shows how

many rows are

there in the

matrix m.

int int rowNum=

rowLen(m)

delRow(mx m, int

rowNum)

Delete a certain

row at rowNum.

mx n mx n= delRow(m,2)

delCol(mx m, int

colNum)

Delete colNum

column from

matrix m.

mx n mx n= delCol(m,2)

addEle(mx m, int

rowNum, int

Insert a specific

entry to matrix

m at the place of

mx n addEle(m,3,2,3)

addEle(m,3,2,3.6)

addEle(m,3,2,(3,2))

colNum, cx

complexnumber)

rowNum row,

colNum column.

getRow(mx m , int

rowN)

Get all the

elements in

rowN row from

matrix m.

mx row mx row = getRow(m,3)

getCol(mx m , int

colN)

Get all the

elements colN

column from

matrix m.

mx col mx row = getCol(m,3)

eigenValue(mx m) Get the eigen

value of a matrix

m.

cx ev cx ev = eigenValue(mx

m)

eigenVector(mx m,

cx eigenvalue)

Get the eigen

vector of a

matrix m with a

given eigen

value

eigenvalue.

mx e mx e = eigenVector(mx

m, (6,0))

5.4 I/O

Function Prototype Description Return Value Example

print() print the

result,with a

special character

“\n” to indicate a

newline.

 print(“hello world”)

print(m)//print out a

matrix

print(

getRow(m,3))//print out

a specific row of a

matrix

