CompA Language

Language Reference Manual

Manager: Xiping Liu (x12639)
Language Guru: Jianshuo Qiu (jq2253)
System Architect: Zhanpeng Su (zs2329), Tianwu Wang (tw2576)
Tester: Yingshuang Zheng (yz3083)

Contents

1. Introduction
2. Types
2.1 Basic Data Types
3. Lexical Conventions
3.1 Identifiers
3.2 Keywords
3.3 Constants
3.4 Comments
3.5 Operators
3.6 Precedence
4. Syntax Notation
4.1 Expressions
4.1.1 Primary Expressions
4.1.2 Postfix and Prefix Expressions
4.1.3 Matrix References
4.1.4 Function Calls
4.2 Declarations
4.2.1 Type Specifiers
4.2.2 Matrix Declarations

4.2.3 Function Declarations

4.3 Initialization
4.3.1 int
4.3.2 double
4.3.3 bool
4.3.4 string
4.3.5 matrix

4.4 Statements
4.4.1 Expression Statement
4.4.2 Compound Statement
4.4.3 Selection Statement
4.4.4 Tteration Statement

5. Standard Library Functions

5.1 Math

5.2 Vectors

5.3 Matrix

541/0

1. Introduction

Welcome to the CompA reference manual! Our team members’ shared experience in

complex number related mathematical computations motivated us to create this language.

Complex numbers are widely used in areas like signal processing, quantum mechanics, and

multi-dimensional data analysis. These computations are usually complicated and

time-consuming. Hence, CompA is targeted to solve those problems efficiently and correctly.

2. Types

2.1 Basic Data Types

Types Examples
integer intx=1
inty=0
float float x =3.56
float y = 70.0
complex number cxx=(5,7)
cxy=(3,8.0)
cxz=(2.0,9)
boolean bool x = true
bool y = false
string string x = “hello world”
matrix mx x = [2, 3]

mx y =[2,3.0;5.8,7]
mx z=[2, (5, 3); (7, 6), 8.8]

The 6 data types in the above table are all the built-in data types in our language. Our

language is statically-typed. Namely, you must declare the data types of your variables before

you use them.

According to the examples in the above table, declaring variables in our language is fairly
simple. Declaration of integer, float, boolean, and string is similar to mainstream
programming languages such as C and Java. The specification of declaring complex number

and matrix is shown as follows.

We use a 2-tuple surrounded by parentheses to declare complex number, where the first tuple
is real part, the second tuple is imaginary part. Both parts can be either integer or float. For
matrix, we include all entries in square brackets. Inside the square brackets, rows are
separated by semicolon, while entries of the same row are separated by comma. Integers,

float numbers, and complex numbers can be put into the same matrix.

There are also some built-in constants in our language.

Constant Name Mathematical Meaning
PI 7 approximately 3.14159
INF 0
E Euler's number approximately equals to
2.71828

3. Lexical Conventions
3.1 Identifiers
Identifiers are tokens that used to store data of dynamic type. Identifiers must start
with lowercase letter, followed by any combinations of numbers, letters and

underscores.

3.2 Keywords
Keywords are reserved identifiers that cannot be modified by others. Below are the
keywords used in the language:

int float cx bool string mx if else for

while break continue return print true false

3.3 Constants

Constants are pre-defined values for easier access by users. Some examples:

PI INF E

3.4 Comments
Comments are similar to C language, in which /* starts comments and */ ends

comments. Anything between /* and */ will be ignored by the syntax. Comments

cannot be nested.

3.5 Operators
There are three sets of operators: logical operators, complex numeric operators and

matrix operators. There will be some overlap on numeric and matrix operators.

Logical Operators Operation Type

== (is equal to), < (is less than), > (is larger | numeric relational
than) , <= (is less than or equal to), >= (is
more than or equal to)

&& (Logical AND), || (Logical OR), ! logical
(Logical NOT)

Assume all numbers written in the form z = a + ib which we call it regular form. For all

real numbers, b is simply 0.

Complex Number Operations Examples
Operators

+ addition zl+z2=(a+c)ti(b+d)

- substraction zl-z2=(a-c)+i(b-d)

multiplication |zl * z2 = (ac - bd) + i(ad + bc)

/ division z1 / 72 =((ac - bd) + i(bc - ad)) / (c"2 + d"2)

power zn=(a+ib)*n

exp() exp power exp(z) = e™a(cos(b) + i(sin(b)))

conj() conjugate conj(z)=a-1b

| | absolute value | |z| = (a"2 + b"2)"\(1/2)

e scientific 5.12e-31 =5.12*10"(-31)
notation

Our language also supports matrix operations:

Operators Operations
+ addition
* multiplication
tp() transpose
dt() determinant
tr() trace
<x|y> inner product
m[rowNum, columnNum] matrix reference

3.6 Precedence
The numeric calculation precedence is just like normal mathematical calculations.
With introduction of matrix into the language, matrix calculations will be the highest

precedence

4. Syntax Notation
4.1 Expressions
4.1.1 Primary Expressions
Primary Expressions are the most basic expressions which make up more
complex expressions. These include identifiers, constants, strings, or

expressions in parentheses.

4.1.2 Postfix and Prefix Expressions

Postfix expressions in CompA include the following:
expression[expression]
expression(parameter-list)
expression++
expression--

And prefix expressions include the following:
++expression

--expression

4.1.3 Matrix References
Matrix elements are referenced through postfix expressions of the form:
expression[expression]
where the first expression is the identifier of an initialized matrix. In the case of a
1-dimensional matrix, the expression in brackets is simply an integer value. For a
2-dimensional matrix, the expression in brackets is a pair of comma separated

integer values.

4.1.4 Function Calls
Function calls are postfix expressions of the form:
expression(parameter-list)
where expression is an existing function identifier and the optional parameter-list
consists of comma-separated expressions that are passed as the function

parameters.

4.2 Declarations
4.2.1 Type Specifiers
e void
e String
declaration of a string

L4 cX

declaration of a complex number
e boolean

declaration of a boolean variable

4.2.2 Matrix Declarations
mx[# of rows, # of columns] name
Define a matrix/vector by specifying its name. We use *;" to separate
rows in matrix, so if only 1 line, then it is a vector. Otherwise if it has more than one

line, then it is a matrix. We specify the size of matrix by specifying the number of rows

and number of columns of the matrix.

4.2.3 Function Declarations
T name (T arg, ...) { statements }
The function declaration above specifies the return type of the function which is denoted
as T. It also specifies the name of the function and the arguments that the function take.

Curly braces are used to group statements of the function.

4.3 Initialization
4.3.1 complex number

CC__9

We can assign a complex value to a complex variable using while declaring it.
If we do not do that, the complex variable will be (0, 0) by default.

Example:

cx cl =(0, 0);

ex c2 = (1.0, 2.3);

4.3.2 boolean
Use “=" to assign a boolean variable true/false while declaring it. It is by default false.
Example:

boolean a = true;

4.3.3 string

(134

Use “=" to assign a string enclosed by double quotes “” while declaring it. It is by

(1524

default an empty string “”.
Example:

string str = “CompA”’;

4.3.4 matrix
Use “="to assign a matrix representation enclosed by [] while declaring it. Its default
initialization depends on the type of its contents. If it is of type complex numbers, then by

default it will contain complex number (0, 0) for each of its entry.

Examples:
mx<cx>[1,4] ml = [(1, 1), (1.1, 0), (0, 0), (-1, -4)];
mx<cx>[2,1] m2 = [(1, 0); (2, 9.2);

4.4 Statements
4.4.1 Expression Statement
Each expression statement consists of only one expression (introduced in 4.1, usually
an assignment or function call). In CompA, each expression statement is followed by

a semicolon:

expression,;

The compiler will report error if there is no semicolon after an expression statement.

However, it is OK if the expression statement before a semicolon is an empty string.

4.4.2 Compound Statement
A compound statement is a sequence of statements (which may be a compound

statement) enclosed in braces. A compound statement is of the form:

expression,
expression,;

{ expression; expression;}

is a compound statement. There is no semicolon following a compound statement. If a
variable is declared within a compound statement, the scope of that variable is only

limited within the corresponding compound statement.

4.4.3 Selection Statement
The selection statement controls the program flow according to the boolean value of
certain conditions. The keywords for selection statement in CompA are if, and else. A

selection statement is of the form:

if(condition){
then-statements
telsed

else-statements

Here, condition must be a boolean expression. If condition is evaluated to be true, the
then-statements run. If condition is evaluated to be false, the else-statements run. In an
if statement that is not followed by else, if condition is true, the then-statements run.
Otherwise, the program control flows to next statement after the if statement. Both

then-statements and else-statements are a compound statement.

4.4.4 Iteration Statement
Iteration statements are used to create loops and execute embedded statements
multiple times. The keywords used in iteration statements in CompA are for, while,

break, and continue. The form of a for-loop statement is in this way:

for(initializer; condition; iterator){

embeded statement;

Here, the initializer sets the initial condition, which is an assignment. The statement

for the initializer runs only once. The condition provides a boolean value to decide if
the loop continues or finishes. The iterator updates what changes after each iteration.
The iterator can be an assignment (including prefix/postfix increment/decrement), or

an invocation for a function. The form of a while-loop statement is in this way:

initializer;
while(condition){

embedded statement,

iterator,
}
where initializer, condition, and iterator are defined the same as in for-loop statement.
Break is used to stop the iteration and make the program flow to next statement.
Continue is used to jump to next iteration without executing the rest of the statements
in the embedded statement after continue. Break and continue are usually placed

inside a selection statement in the loop.

5. Standard Library Functions

5.1 Math
Function Prototype | Description Return Value Example
exp(int/float/cx a, Calculate the int/float/cx result int result = exp(1,2)
int/float/cx b) exponential of a float result = exp(1.9,2)
to the b. cx result = exp((1,2),2)

cos(cx z) Calculate the cX -cos(zi)=cosh(z)= A
cosine of z.
sin(cx z) Calculate the cX -sin(zi)=sinh(z)= A
sine of z.
5.2 Complex Number
Function Prototype | Description Return Value Example
euler(cx a) Change the form | mx result mx a = euler((1,3))
of'a complex [magnitude,angle]
number into a
exponential
form.
5.3 Matrix
Function Prototype | Description Return Value Example
addRow(mx m, int Insert a row to mx n mx n= addRow(m,3,
rowNum, mx row) matrix m at [0,8,3])
rowNum row mx
with a content n=addRow(m,3,[2.3,1.8,
row. 1.9])

mx
n=addRow(m,3,[(1,-9),(
23_8)])

addCol(mx m, int Insert a column |mxn mx n=addCol(m,3,
colNum, mx col) to matirx m at [0,8,3])
colNum with a mx n=
content of col. addCol(m,3,[2.3,1.8,1.9]
)
mx
n=addCol(m,3,[(0,5),(32
.5,0),(1,-9)])
colLen(mx m) Shows how int int colNum= rowLen(m)
many columns
are there in the
matrix m.
rowLen(mx m) Shows how int int rowNum=
many rows are rowLen(m)
there in the
matrix m.
delRow(mx m, int Delete a certain | mx n mx n= delRow(m,2)
rowNum) row at rowNum.
delCol(mx m, int Delete colNum |mxn mx n= delCol(m,2)
colNum) column from
matrix m.
addEle(mx m, int Insert a specific |mxn addEle(m,3,2,3)

rowNum, int

entry to matrix

m at the place of

addEle(m,3,2,3.6)
addEle(m,3,2,(3,2))

colNum, cx

complexnumber)

rowNum row,

colNum column.

getRow(mx m, int Get all the mx row mx row = getRow(m,3)
rowN) elements in
rowN row from
matrix m.
getCol(mx m , int Get all the mx col mx row = getCol(m,3)
colN) elements colN
column from
matrix m.
eigenValue(mx m) Get the eigen cX ev cx ev = eigenValue(mx
value of a matrix m)
m.
eigenVector(mx m, | Get the eigen mx e mx e = eigenVector(mx
cx eigenvalue) vector of a m, (6,0))
matrix m with a
given eigen
value
eigenvalue.
5410
Function Prototype | Description Return Value Example

print()

print the
result,with a
special character
“\n” to indicate a

newline.

print(“hello world”)
print(m)//print out a
matrix

print(
getRow(m,3))//print out
a specific row of a

matrix

