
COMS W4115
Programming Languages and Translators

Homework Assignment 2

Prof. Stephen A. Edwards Due October 27th, 2017
Columbia University at 12:00 PM

Submit your assignment on paper (e.g., printouts) at the be-
ginning of class. Include a demonstration of your code working
on some examples. Hybrid section students may slip their assign-
ments under my door.

Do this assignment alone. You may consult the instructor or a
TA, but not other students. All the problems ask you to use OCaml.
You may download the compiler from ocaml.org.

1. Write an OCaml function all that, given a function and a list,
returns true if applying the function to every element of the
list returns true and false otherwise.

all (fun x −> x) [] = true
all (fun x −> false) [1] = false
all (fun x −> x mod 2 == 0) [2;4;6] = true
all (fun x −> x mod 2 == 0) [2;5;6] = false

2. Write a word frequency counter. Start from the following
ocamllex program (wordcount.mll) that gathers in a list of
strings all the words in a file, then prints them.

{ type token = EOF | Word of string }

rule token = parse
| eof { EOF }
| [’ a’−’z’ ’A’−’Z’]+ as word { Word(word) }
| _ { token lexbuf }

{
let lexbuf = Lexing.from_channel stdin in
let wordlist =

let rec next l =
match token lexbuf with

EOF −> l
| Word(s) −> next (s :: l)

in next []
in
List . iter print_endline wordlist

}

Replace the List.iter call with code that scans through the list
and builds a string map whose keys are words and whose val-
ues count the number of apearances of each word. Then, use
StringMap.fold to convert this to a list of (count, word) tuples;
sort them using List.sort; and print them with List.iter. Sort
the list of (count, word) pairs using

let wordcounts =
List .sort (fun (c1, _) (c2, _) −>

Pervasives.compare c2 c1)
wordcounts in

Compiling and running my (20-more-line) solution:

$ ocamllex wordcount.mll
4 states, 315 transitions, table size 1284 bytes

$ ocamlc -o wordcount wordcount.ml

$./wordcount < wordcount.mll

9 word
7 map
7 let
7 StringMap
6 in
...

3. Extend the three-slide “calculator” example shown at the end
of the Introduction to OCaml slides (the source is also avail-
able on the class website) to accept the variables named a
through z, assignment to those variables, and sequencing us-
ing the “;” operator. For example,

a = 3; c = b = 6; a * b + c

should print “24”

Use an array of length 26 initialized to all zeros to store the
values of the variables. Add tokens to the parser and scan-
ner for representing assignment, sequencing, and variable
names.

The ocamllex rule for the variable names, which converts the
letters a–z into the corresponding literals, is

| [’ a’−’z’] as lit
{ VARIABLE(int_of_char lit − 97) }

The new ast.mli file is

type operator = Add | Sub | Mul | Div
type expr =

Binop of expr * operator * expr
| Lit of int
| Seq of expr * expr
| Asn of int * expr
| Var of int

My solution required adding just 20 lines of code across the
four files.

Make sure your code compiles without warnings

