Semiconductor

sem·i·con·duc·tor

noun

1. A substance, such as silicon or germanium, with electrical conductivity intermediate between that of an insulator and a conductor
2. A semiconductor device

<table>
<thead>
<tr>
<th>Periodic Table of the Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Na</td>
</tr>
<tr>
<td>Sc</td>
</tr>
<tr>
<td>Rb</td>
</tr>
<tr>
<td>Cs</td>
</tr>
<tr>
<td>Ac</td>
</tr>
<tr>
<td>Es</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lanthanide Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
</tr>
<tr>
<td>Eu</td>
</tr>
<tr>
<td>Tm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actinide Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
</tr>
<tr>
<td>Am</td>
</tr>
<tr>
<td>Md</td>
</tr>
</tbody>
</table>

© 2013 Todd Helmenstine
www.chemnotes.org
Sand into Silicon

Silica a.k.a. SiO$_2$ a.k.a. Quartz

SiO$_2$ + 2 C \rightarrow Si + 2 CO

Elemental, amorphous silicon

Monocrystalline Silicon Ingot
Doping Silicon Makes It a Better Conductor

Undoped (pure) silicon crystal: Not a good conductor

p-type (doped) silicon: boron atom steals a nearby electron

n-type (doped) silicon: arsenic’s extra electron jumps loose
A PN Junction aka A Diode

Depletion region

p (holes) n (electrons)

Ammeter

0 V
A PN Junction aka A Diode

Depletion region

2 V

Forward biased: current flows
A PN Junction aka A Diode

Depletion region

Reverse biased: no current flow
An N-Channel MOS Transistor
An N-Channel MOS Transistor

Gate positive: On

Gate

SiO₂

Drain

Source

n

n

p (holes)

Ammeter

3 V

3 V

0
An inverter is built from two MOSFETs:
An n-FET connected to ground
A p-FET connected to the power supply
When the input is near the power supply voltage ("1"),
the p-FET is turned off;
the n-FET is turned on, connecting the output to ground ("0").
n-FETs are only good at passing 0’s
The CMOS Inverter

When the input is near ground (“0”), the p-FET is turned on, connecting the output to the power supply (“1”); the n-FET is turned off. p-FETs are only good at passing 1’s.
The CMOS NAND Gate

Two-input NAND gate:
- two n-FETs in series;
- two p-FETs in parallel
The CMOS NAND Gate

Both inputs 0:
Both p-FETs turned on
Output pulled high
The CMOS NAND Gate

One input 1, the other 0:
One p-FET turned on
Output pulled high
One n-FET turned on, but does not control output
The CMOS NAND Gate

Both inputs 1:
Both n-FETs turned on
Output pulled low
Both p-FETs turned off
The CMOS NOR Gate

Two-input NOR gate:
- two n-FETs in parallel;
- two p-FETs in series.

Not as fast as the NAND gate because n-FETs are faster than p-FETs
A CMOS AND-OR-INVERT Gate
Pull-up and Pull-down networks must be complementary; exactly one should be connected for each input combination.

Series connection in one should be parallel in the other.
CMOS Inverter Layout

Cross Section Through N-channel FET

Top View
Full Adder Layouts

Intel 4004: The First Single-Chip Microprocessor

Announcing a new era of integrated electronics

4001: 256-byte ROM + 4-bit IO port
4002: 40-byte RAM
4003: 10-bit shift register
4004: 740 kHz 4-bit CPU w/ 45 instructions (2300 transistors)
Intel 4004 Masks