‘U‘I-bUUN—\

CSEE W3827
Fundamentals of Computer Systems

Homework Assignment 3

Prof. Stephen A. Edwards
Columbia University

Due June 26, 2017 at 1:00 PM

Name:
Uni:

Show your work for each problem; we are more interested in how you get
the answer than whether you get the right answer.



1. (20 pts.) In MIPS assembly, implement the standard C function strspn:
size_t strspn(const char *s, const char *accept)

This returns the length (in bytes) of the initial segment of the string s
that consists entirely of bytes in accept.

Start from the strspn.s template on the class website; use the SPIM
simulator.

Your function must obey MIPS calling conventions.

Turn in your solution on paper with evidence that it works. Add some
test cases.

On the supplied test harness, your code should print

strspan("Hello World!", "Hloe") = 5

strspan("Hello World!", "H Wdelor") = 11
strspan("Hello World!", "!H Wdelor") = 12
strspan("Hello World!", "HHHHHH111llooo") = 1
strspan("Hello World!", "HHHHHHoooeeeelll") = 5
strspan("Hello World!", "HHHHHHoooeeeelll Wrld!") = 12
strspan("", "Hello World!") = 0

strspan("Hello World!"™, "") =0

strspan("Hello World!"™, "Hello World!") = 12
strspan("Hello World!", "HelWrld!") = 4

strspan("", "") = 0



2. (30 pts.) In MIPS assembly, implement an “eval” function that walks a
tree that represents a Boolean expression and computes its meaning.
Each tree node begins with a byte that indicates the node is an integer
(leaf) or operator plus one or two pointers to their arguments. In C,

int eval(struct expr xe)

{
struct expr {
char op; /x 0 for leaf =/
union {
unsigned int leaf;
struct {
struct expr «left;
struct expr xright;
} branch;
}pl;
|5

}

int left, right;

if (e—>op == 0) return e—>pl.leaf;

left = eval(e—>pl.branch.left);

if (e—>op =="!") return ~left; /x bitwise NOT +/
right = eval(e—>pl.branch.right);

switch (e—>op) {

case '+': return left | right; /x bitwise OR x/
case 'x': return left & right; /x bitwise AND »/
case 'A': return left A right; /x bitwise XOR »/

}

return O;

Start from the eval.s template on the class website.
Your function must obey MIPS calling conventions. Use the stack to

implement the recursion.



Implement your function in the SPIM simulator.

Turn in your solution on paper with evidence that it works. Add some
test cases.

On the supplied test harness, your code should print

1=1

0=0

4 =4

(0+4) = 4
(0+1) =1
(1+1) =1
(1+4) = 5
(7+(1+1D)) =1
(2+3) = 3
((1+4)+(0+1)) = 5
1(3) = -4
(070) =0
(0r1) =1
(121 =0

((0+4)7r(1+4)) =1
PCC(0+4)A(1+4))) = -2



3. (25 pts.) Extend the single-cycle MIPS processor to support the xori
instruction (i-type, OP=001110).

———\MemtoReg
[Control "
. |MemWrite
Unit
Branch
[ALUControl pesre
3126
—10p |ALUSrc
P2 Funct [RegDst
egWrite
—
Cl‘.K CI‘.K
stz At " ron e 5
A RD f— | ALUResult A RD ReadData 1
Instruction 2016) pp RD2 SrcB
Memory a3 | ~ Men:::ry
WD3 Register WriteData WD
File
1 0
WriteRe !
PCPlus4 —
Result

Inst. oP RegWrite RegDst ALUSrc Branch MemWrite MemToReg ALUOp

R-type 000000 1 1 0 0 0 0 1-
1w 100011 1 0 1 0 0 1 00
sw 101011 0 - 1 0 1 - 00
beg 000100 0 - 0 1 0 - 01



4. (10 pts.) Assuming the following dynamic instruction frequency for a
program running on the single-cycle MIPS processor

addu 25%
addi 20%
beq 10%
Iw 25%
sw 20%

(a) (5 pts.) In what fraction of all cycles is the data memory accessed
(either read or written)?

(b) (5 pts.) In what fraction of cycles is the sign extend circuit used?



5. (15 pts.) For each of the caches listed below, show how a 32-bit
addresses breaks into tag, set index, and byte offset fields.

Cache A: 16384B, 4-way set-associative, 16B lines

00000000000000000000000O0O0O0O0Q0O0O0OOO

Cache B: 8192B, direct-mapped, 32B lines

000000000000000000O0O0O0O0O0O0O0OOQOO0OOO



