
Fundamentals of Computer Systems
Caches

Stephen A. Edwards

Columbia University

Summer 2017

Illustrations Copyright © 2007 Elsevier

Computer Systems

Performance depends on which is slowest:
the processor or the memory system

Processor Memory
Address

MemWrite

WriteData

ReadData

WE

CLK

Memory Speeds Haven’t Kept Up

Year

CPU

100,000

10,000

100

1000

P
e

rf
o

rm
a

n
c
e

10

1

19
80

19
81

19
82

19
83

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

19
84

Memory

Our single-cycle memory assumption has been wrong since
1980.

Hennessy and Patterson. Computer Architecture: A Quantitative Approach. 3rd ed., Morgan Kaufmann, 2003.

Your Choice of Memories

Fast Cheap Large

On-Chip SRAM 4 4

Commodity DRAM 4 4

Supercomputer 4 4

Memory Hierarchy

Fundmental trick to making a big memory appear fast

Technology Cost Access Time Density
($/Gb) (ns) (Gb/cm2)

SRAM 30 000 0.5 0.00025
DRAM 10 100 1 – 16
Flash 2 300∗ 8 – 32
Hard Disk 0.1 10 000 000 500 – 2000

∗Read speed; writing much, much slower

A Modern Memory Hierarchy

AMD Phenom 9600
Quad-core
2.3 GHz
1.1–1.25 V
95 W
65 nm

A desktop machine:

Level Size Tech.

L1 Instruction∗ 64 K SRAM
L1 Data∗ 64 K SRAM
L2∗ 512 K SRAM
L3 2 MB SRAM
Memory 4 GB DRAM
Disk 500 GB Magnetic

∗per core

Temporal Locality

What path do your eyes take
when you read this?

Did you look at the drawings
more than once?

Euclid’s Elements

Spatial Locality

If you need something, you may also need something nearby

Memory Performance

Hit: Data is found in the level of memory hierarchy

Miss: Data not found; will look in next level

Hit Rate= Number of hits
Number of accesses

Miss Rate= Number of misses
Number of accesses

Hit Rate+Miss Rate= 1

The expected access time EL for a memory level L with
latency tL and miss rate ML:

EL = tL +ML ·EL+1

Memory Performance Example
Two-level hierarchy: Cache and main memory

Program executes 1000 loads & stores

750 of these are found in the cache

What’s the cache hit and miss rate?

Hit Rate= 750
1000 = 75%

Miss Rate= 1−0.75= 25%

If the cache takes 1 cycle and the main memory 100,

What’s the expected access time?

Expected access time of main memory: E1 = 100 cycles

Access time for the cache: t0 = 1 cycle

Cache miss rate: M0 = 0.25

E0 = t0 +M0 ·E1 = 1+0.25 ·100= 26 cycles

Memory Performance Example
Two-level hierarchy: Cache and main memory

Program executes 1000 loads & stores

750 of these are found in the cache

What’s the cache hit and miss rate?

Hit Rate= 750
1000 = 75%

Miss Rate= 1−0.75= 25%

If the cache takes 1 cycle and the main memory 100,

What’s the expected access time?

Expected access time of main memory: E1 = 100 cycles

Access time for the cache: t0 = 1 cycle

Cache miss rate: M0 = 0.25

E0 = t0 +M0 ·E1 = 1+0.25 ·100= 26 cycles

Memory Performance Example
Two-level hierarchy: Cache and main memory

Program executes 1000 loads & stores

750 of these are found in the cache

What’s the cache hit and miss rate?

Hit Rate= 750
1000 = 75%

Miss Rate= 1−0.75= 25%

If the cache takes 1 cycle and the main memory 100,

What’s the expected access time?

Expected access time of main memory: E1 = 100 cycles

Access time for the cache: t0 = 1 cycle

Cache miss rate: M0 = 0.25

E0 = t0 +M0 ·E1 = 1+0.25 ·100= 26 cycles

Cache

Highest levels of memory hierarchy

Fast: level 1 typically 1 cycle access time

With luck, supplies most data

Cache design questions:

What data does it hold? Recently accessed

How is data found? Simple address hash

What data is replaced? Often the oldest

What Data is Held in the Cache?

Ideal cache: always correctly guesses what you want before
you want it.

Real cache: never that smart

Caches Exploit

Temporal Locality

Copy newly accessed data
into cache, replacing oldest if
necessary

Spatial Locality

Copy nearby data into the
cache at the same time

Specifically, always read and
write a block at a time (e.g.,
64 bytes), never a single byte.

A Direct-Mapped Cache

00...00010000

230-Word Main Memory

mem[0x00000000]

mem[0x00000004]

mem[0x00000008]

mem[0x0000000C]

mem[0x00000010]

mem[0x00000014]

mem[0x00000018]

mem[0x0000001C]

mem[0x00000020]

mem[0x00000024]

mem[0xFFFFFFE0]

mem[0xFFFFFFE4]

mem[0xFFFFFFE8]

mem[0xFFFFFFEC]

mem[0xFFFFFFF0]

mem[0xFFFFFFF4]

mem[0xFFFFFFF8]

mem[0xFFFFFFFC]

23-Word Cache

Address

00...00000000

00...00000100

00...00001000

00...00001100

00...00010100

00...00011000

00...00011100

00...00100000

00...00100100

11...11110000

11...11100000

11...11100100

11...11101000

11...11101100

11...11110100

11...11111000

11...11111100

Set 7 (111)

Set 6 (110)

Set 5 (101)

Set 4 (100)

Set 3 (011)

Set 2 (010)

Set 1 (001)

Set 0 (000)

Data

This simple cache has

Ï 8 sets
Ï 1 block per set
Ï 4 bytes per block

To simplify answering
“is this memory in the
cache?,” each byte is
mapped to exactly one
set.

Direct-Mapped Cache Hardware

DataTag

00
Tag Set

Byte

OffsetMemory

Address

DataHit

V

=

27 3

27 32

8-entry x

(1+27+32)-bit

SRAM

Set 7
Set 6
Set 5
Set 4
Set 3
Set 2
Set 1
Set 0

Address bits:

0–1: byte within block

2–4: set number

5–31: block “tag”

Cache hit if

in the set of the address,

Ï block is valid (V=1)

Ï tag (address bits 5–31)
matches

Direct-Mapped Cache Behavior

A dumb loop:

repeat 5 times

load from 0x4;
load from 0xC;
load from 0x8.

li $t0, 5
l1: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addiu $t0, $t0, -1
j l1

done:

DataTagV

00...001 mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte

Offset
Memory

Address

V
3

00100...00

1

00...00

00...00

1

mem[0x00...0C]

mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

When two recently accessed addresses map to the same cache block,
Cache when reading 0x4 last time

Assuming the cache starts empty, what’s
the miss rate?

4 C 8 4 C 8 4 C 8 4 C 8 4 C 8

M M M H H H H H H H H H H H H

3/15= 0.2= 20%

Direct-Mapped Cache Behavior

A dumb loop:

repeat 5 times

load from 0x4;
load from 0xC;
load from 0x8.

li $t0, 5
l1: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addiu $t0, $t0, -1
j l1

done:

DataTagV

00...001 mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte

Offset
Memory

Address

V
3

00100...00

1

00...00

00...00

1

mem[0x00...0C]

mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

When two recently accessed addresses map to the same cache block,
Cache when reading 0x4 last time

Assuming the cache starts empty, what’s
the miss rate?

4 C 8 4 C 8 4 C 8 4 C 8 4 C 8

M M M H H H H H H H H H H H H

3/15= 0.2= 20%

Direct-Mapped Cache: Conflict

A dumber loop:

repeat 5 times

load from 0x4;
load from 0x24

li $t0, 5
l1: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addiu $t0, $t0, -1
j l1

done:

DataTagV

00
Tag Set

Byte
OffsetMemory

Address

V
3
00100...01

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Cache State

Assuming the cache starts empty, what’s
the miss rate?

4 24 4 24 4 24 4 24 4 24

M M M M M M M M M M

10/10= 1= 100% Oops

These are conflict misses

Direct-Mapped Cache: Conflict

A dumber loop:

repeat 5 times

load from 0x4;
load from 0x24

li $t0, 5
l1: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addiu $t0, $t0, -1
j l1

done:

DataTagV

00...001 mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte
OffsetMemory

Address

V
3
00100...01

0

0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Cache State

Assuming the cache starts empty, what’s
the miss rate?

4 24 4 24 4 24 4 24 4 24

M M M M M M M M M M

10/10= 1= 100% Oops

These are conflict misses

No Way! Yes Way! 2-Way Set Associative Cache

DataTag

Tag Set
Byte

OffsetMemory

Address

Data

1 0

Hit1

V

=

00

32 32

32

DataTagV

=

Hit1Hit0

Hit

28 2

28 28

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

2-Way Set Associative Behavior

li $t0, 5
l1: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addiu $t0, $t0, -1
j l1

done:

Assuming the cache starts empty,
what’s the miss rate?

4 24 4 24 4 24 4 24 4 24

M M H H H H H H H H

2/10= 0.2= 20%

Associativity reduces conflict misses

DataTagV DataTagV

00...001 mem[0x00...24] 00...101 mem[0x00...04]

0

0

0

0

0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

An Eight-way Fully Associative Cache

DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV

Way 0Way 1Way 2Way 3Way 4Way 5Way 6Way 7

Figure 8.11

No conflict misses: only compulsory or capacity misses

Either very expensive or slow because of all the associativity

Exploiting Spatial Locality: Larger Blocks

0x8000 0009C: 00
Tag

Byte

Offset
Memory

Address
11100...100

Block

Offset

1

800000 9 C

Set

DataTag

00
Tag

Byte

OffsetMemory

Address

Data

V

Block

Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0

0
0

0
1

1
0

1
1

2 sets
1 block per set (Direct Mapped)
4 words per block

Direct-Mapped Cache Behavior w/ 4-word block

The dumb loop:

repeat 5 times

load from 0x4;
load from 0xC;
load from 0x8.

li $t0, 5
l1: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addiu $t0, $t0, -1
j l1

done:

Set 1

DataTagV

Set 000...001 mem[0x00...0C]

0

mem[0x00...08] mem[0x00...04] mem[0x00...00]

00
Tag

Byte

OffsetMemory

Address

V

Block

OffsetSet

00...00 0 11

Figure 8.14 Cache when reading 0xC

Assuming the cache starts empty, what’s
the miss rate?

4 C 8 4 C 8 4 C 8 4 C 8 4 C 8

M H H H H H H H H H H H H H H

1/15= 0.0666= 6.7%

Larger blocks reduce compulsory misses by
exploting spatial locality

Direct-Mapped Cache Behavior w/ 4-word block

The dumb loop:

repeat 5 times

load from 0x4;
load from 0xC;
load from 0x8.

li $t0, 5
l1: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addiu $t0, $t0, -1
j l1

done:

Set 1

DataTagV

Set 000...001 mem[0x00...0C]

0

mem[0x00...08] mem[0x00...04] mem[0x00...00]

00
Tag

Byte

OffsetMemory

Address

V

Block

OffsetSet

00...00 0 11

Figure 8.14 Cache when reading 0xC

Assuming the cache starts empty, what’s
the miss rate?

4 C 8 4 C 8 4 C 8 4 C 8 4 C 8

M H H H H H H H H H H H H H H

1/15= 0.0666= 6.7%

Larger blocks reduce compulsory misses by
exploting spatial locality

The Desktop Machine Revisited

AMD Phenom
9600
Quad-core
2.3 GHz
1.1–1.25 V
95 W
65 nm

On-chip caches:

Cache Size Sets Ways Block

L1I∗ 64 K 512 2-way 64-byte
L1D∗ 64 K 512 2-way 64-byte
L2∗ 512 K 512 16-way 64-byte
L3 2 MB 1024 32-way 64-byte

∗per core

Intel On-Chip Caches
Chip Year Freq. L1 L2

(MHz) Data Instr

80386 1985 16–25 off-chip none

80486 1989 25–100 8K unified off-chip

Pentium 1993 60–300 8K 8K off-chip

Pentium Pro 1995 150–200 8K 8K 256K–1M
(MCM)

Pentium II 1997 233–450 16K 16K 256K–512K
(Cartridge)

Pentium III 1999 450–1400 16K 16K 256K–512K

Pentium 4 2001 1400–3730 8–16K
12k op

trace cache 256K–2M

Pentium M 2003 900–2130 32K 32K 1M–2M

Core 2 Duo 2005 1500–3000 32K
per core

32K
per core 2M–6M

