)0/

Akira Baruah
Chaiwen Chou

UUR GOALS

Initially set out to emulate the NES

Implement the 6502 1in SystemVerilog

Synthesize the processor onto the FPGA

Create software to interface with the processor
Load programs into memory and read output of the
processor in a user program

HTGH LEVEL DESTGN

...

ECPU - Contains control signals, registers, and wires
EALU - Computes all arithmetic operations for CPU

éMemory - Basic read/write functionality

ORTGINAL BLOCK DTAGRAM

Main changes:

e Single clock
Control logic:

state machine

o Mealy finite

RESG v INTG

PREDECODE

PREDECODE "
REGISTER

(PD)

LoGIc

TZPRE
(T$2ROY 8!

R 42

Toro

TIMING TIH»SYNC

[T

DATA BUS
TRISTATE
BUFFERS

DATA OUTPUT-|
REGISTER

(DOR]

)

INSTRUCT!
REGISTER Lo
(IR} TO |TI
TIX | T2
EENED) :>
TS5 [T6

1]

L] TG W

21%i30
DECODE ROM

INTERRUPT Al
RESET CONTR!

g

FLIP-FLOPS]
INMIG NMIL
IRQP [NMIP
[ResP |iINTG

RESG

l

3
v v ¥y

2
i
@l

ND
oL |

READY

oY
READY D conTROL i
Feirs
g 30y
AW F=osary
= 2R
sv /v
DB7/N
cLOCK A INPUT REGISTER
#
ERATOR|
40 IN9| GENERATOI [y .
175 | ave
* ou1’¢—‘I 080/ —of 2
N ma [Sez (©sA)$2-ACR
42 ouT o>
DB1/Z—» z
]
082/2 PROCE: o
082721 | | STATUS o
"""l | REGISTER
B3/0-
7*550—_:1 ° #) (DAAY g2 ACR
Tors
L ACCUMULATOR
Mn] v [(AC)
N] eliieeP/08 AC/DB > 25 o
0BYN— N

RANDOM

CONTR

oL

LOGIC

CONTROL | [0 iy
FUIP-FLOPS| [

INPUT DATA LATCH (DL)

ous
NABLE

L/ADL
PCH/PCH

L

[[ox PROGRAM coxo]
COUNTER
HIGH SELECT

REGISTER (PCHS)

pans@-7ipcrsio3)

0/aDL2

T
B INPUT REGISTER

DRAIN
MOSFETS

sus
jexis. <

A%

REGISTER
(s}

[e-ac/se

OPEN

DRAIN
MOSFETS [«

#1-ADH/ABH

O/ ADHC
O/ACHIT)

REGISTER

(3]

[T pas
ADDRESS [DA
Ldions BUS | 5[PAIE
HIGH 2] pai
REGISTER [31 pay
(H) 5o
1}pas
o [Pas
$1-ADL /ABL
|
7 A
L aooRess |- PAS
oo BUS [STPA
Low [4}»a
REGISTER [31-pa
(8L [Hips
] Al
oPa
S8/X o (e
i
| INDEX
L REGISTER‘
(x) !
] o
g

ARCHITECTURE

Control signals

Combinational/sequential blocks

abs
abs, X

abs,Y

impl
ind
%,ind
ind,¥
rel
2pg
zpg,X
z2pg,Y

ADDRESSING MODES

. Accumulator

absolute

absolute, X-indexed

. absolute, Y-indexed

immediate

implied

. indirect

X-indexed, indirect
indirect, Y-indexed
relative

zeropage

. zeropage, X-indexed

zeropage, Y-indexed

OPC A
OPC $HHLL
OPC $EHLL,X
OPC $HHLL,Y
OPC #$BB
0PC

OPC ($HHLL)
OPC ($BB,X)
OPC (SLL),Y
OPC $BB

0PC $LL

0PC $LL,X
0PC $LL,Y

operand is AC

operand is address $HHLL

operand is address incremented by X with carry

operand is address incremented by Y with carry

operand is byte (BB)

operand implied

operand is effective address; effective address is value of address

operand is effective zeropage address; effective address is byte (BB) incremented by X without carry
operand is effective address incremented by Y with carry; effective address is word at zeropage address
branch target is PC + offset (BB), bit 7 signifies negative offset

operand is of address; address hibyte = zero (§00xx)

operand is address incremented by X; address hibyte = zero ($00xx); no page transition

operand is address incremented by Y; address hibyte = zero ($00xx); no page transition

Absolute Addressing (4 cycles)

Tn Address Bus Data Bus R/W Comments

TO PC OP CODE 1 Fetch OP CODE

Tl PC + 1 ADL 1 Fetch low order byte of
Effective Address

i i e+ 2 ADH 1 Fetch high order byte of
Effective Address

13 ADH, ADL Data 0 Write internal register
to memory

TO PC + 3 OP CODE 1 Next Instruction

IO P -l[V['_ MODU[[user-level progiram ~—— binary

sockit_test

soc_system

nes_ctrl

QUARTUS, QSYS, AND THE SOFTWARE INTERFACE

o Attempted kernel module for interfacing with hardware

e Hacky solution that worked for us: mmap to “/dev/mem”

e (Created user-space program that writes into NES memory
the contents of a binary file containing instructions for
the processor

e 16 bits - top 8 bits for our own “opcodes”, bottom 8 for
data

Feb 21 i 201 6 — May 12, 201 6 Contributions: Commits ~

Contributions to master, excluding merge commits

Feb 21 Feb 28 Mar 06 Mar 13 Mar 20 Mar 27 Apr 03 Apr 10 Apr 17 Apr 24 May May 08

Feb 21 : 2016 — May 1 2, 2016 Contributions: Deletions ~

Contributions to master, excluding merge commits

800

400

Feb 21 Feb 28 Mar 06 Mar 13 Mar 20 Mar 27 Apr 03 Apr 10 Apr 17 Apr 24 May May 08

Feb 21 ’ 201 6 o May .1 2, 201 6 Contributions: Additions ~

Contributions to master, excluding merge commits

400k
300k
200k

100k

Feb 21 Feb 28 Mar 06 Mar 13 Mar 20 Mar 27 Apr 03 Apr 10 Apr 17 Apr 24 May May 08

LESSONS LEARNED

Time management and planning is key
Look for help early

FPGA Board 1is very delicate
Testing takes more time than you expect

