
Fantastic Tetris

By Weipeng Dang; Benjie Tong; Yanbo Zou; Yiran Tao

Introduction:

The fantastic Teristic is a variation of a normal Teristic. The game will
automatically generate three different blocks into the screen for the users to
choose. The user can put the blocks into the grid(10*10 in dimension) in anywhere
the user like. After the user put one block, the block is fixed in that position and
can’t be moved. After the user put all the three blocks into the grid, the game will
check if the game is terminated or not. If it is not terminated, the grid will give three
more blocks for the user to continue the game. The user should try to put blocks
into the grid in order to form a line. If one horizontal or one vertical line is detected
in the grid, that line is cleared.

Hardware and Software Connections:

In software, the C language

will be used to implement all the

controls of the system. It first

generates the three blocks in the

screen and then keeps getting the

user’s inputs to control the

screen display by using the VGA

controller in the hardware part.

User Interface

As showed in the graph, the grid is consist of 10*10 blocks.

The “red” blocks are the blocks are put in the grid and can’t be

moved(except one line formed and the red line is cleared). The

“gray” block means that that block has not been put but can’t

be put in the position because another block has already been

put in the location. The “green” block has not been put and

can be put in the location. The three blocks in the right of the

grid are used for the user to select. After the user select and

put the block into the screen, the block will disappear. If one

line is cleared, the score will be recorded at the bottom of the

screen.

End Of Game
There are two data shown in the bottom of the
screen. One in the left(4 bits) is to record the score.
If the user successfully clear one vertical line or a
horizontal line, there will be one score stored.

The three bits data in the right bottom screen is the
time left. In the beginning the time is 100 seconds
and it will be decreased. After 100 seconds passed,
the game will terminated automatically, And the grid
becomes all green, then all grey and then all red if
time is zero. Also, as a bonus, if one line is cleared,
we give ten seconds increment.

End of Game
The design of the end is to use
the thread method to keep
record the time. The “start” is
the time the game is started
and we keep track the time by
calculating the “dif”. The time
will be separated into three
parts and passed into hardware
by using three “write_segment”
operations.

Communication

The “address” is the grid’s

index and the “segment” is the

data in the grid.

The hardware stores all the

information of a grid by using a

RAM module. It loads the gird if

it needs and can change and

stores the data in the RAM

whenever the software

indicates a change.

ROM to Integers
The ten integers are stored
in the ROM and can be
accessed by the hardware to
displayed into the screen.

We use “vcount” and
“hcount” to indicate the
specific location where the
integer showed.

The size of every 23*32
sprites.

Hardware Design Overview

Most Important File:

VGA_LED: top module for the communication with Avalon MM.

VGA_LED_Emulator: module for all vision accomplishment .

Under VGA_LED_Emulator: One 2-Port-RAM for array data write and read

 Ten 1-Port-ROMs for score sprites read

Hardware VGA_LED

VGA_LED: Communicate with Avalon MM

Basic logic:1. Receive two 8 bit buses, Address and Writedata

 2. If Address is less than 128(Address[7]=0, only use is 0-99), pass
Address and Writedata to VGA_LED_Emulator and write it in RAM for further
use; if address is Address is more than 128 (Address[7]=1, only 10 are used), pass
Writedata directly to the Register according to the Address.

Hardware VGA_LED_Emulator

VGA_LED_Emulator: Achieve all Vision Acomplishment

1. Control the three parts in the screen: Main Grid, Tetris selection, Score Display

Main Grid: Keep refreshing by the software, pass the data to RAM and
according to the hcount and vcount to decide the read address.

Tetris Selction: 14 different type of tetrises embedded in the hardware by
directly limit the range of vcount and hcount.

Score Display: Use ROM to store the sprites and read them according to the
position.

Software Design

In software, shapes are stored as two dimensional arrays

 Use matrices to store game status

● Main matrix for confirmed change

○ 1 - occupied

○ 0 - unoccupied

● Cache matrix for unconfirmed change

○ 3 - occupied and covered

○ 2 - unoccupied and covered

● Timing limit

Audio And Sound

We use XBOX handle to
control the game. Instead
of using others’ driver,
we design our own
driver.

In the future
We are trying to make the game can be played by multiple players. However, if we
connect two usb inputs to the game, both of the two players are disenabled.

We are trying to figure out this problem and make the game work in two-player
modes.

