Switch ON
An FPGA based Switch

Ayush Jain(gj2672)
Donovan Chan(dc3095)

Shivam Choudhcry(503<?73)

o

B\ “\wmm MR \\\ ©'
\“‘ 0)‘0 Mgy, ‘.”fO‘

S \\ E \

A\

L1111}

1171 w— R R

Y1
|/,\\\

— | n\ N\ 7S
— IN\§

—— L

1.1
1.2

2.1

2.2
2.2.1

2.3

3.1

3.2

3.2.1
3.2.2
3.2.3

4.1
4.1.1

Intfroduction

Aim

Design Architecture

System Architecture|

Hardware Section|

AVAION BUS| . .o

Software Section|

Simulation

Infroduction

Simulation Test Bench|
Component Simulation|occo i
RAM Simulation].

CONCIUSION| . . e

Hardware Design

Interfacing with Software|
Memory - RAM| ...

4.2
4.2.1

4.3

4.3.1
432
4.3.3

5.1
5.1.1
5.1.2

6.1

7.1
7.2

8.1

Network Fabric|
Crossbar SwitchModell. ...

Scheduling Algorithm|

Single Input Queue Scheduler| ...
Performance Comporison|
The whole suite]

Sofiware|

Implementation details |
Packet Generafor|ooci i
VOO O . . o

|Eva|uq’rion|
|FPGA Switch Performance

Conclusion|

lLessons Learnt{
Future Work

Appendix

12
12

14
15
16
18

20
20
20

22

24
25

26

1.1

1.2

LEEN
:JM|

. r

L fa;'r-,.l

I+

St == sl

5 _ al nf,i -
‘@e ("R 112, Worl@! |

. F e

r

Aim
The aim of the project is to create a FPGA based switch. The main focus of the project is
in optimising the throughput of a network switch through the implementation of a scheduler.
Decoding of actual incoming packets will not be considered in this projectﬂ Therefore the
packets being generated will contain a few items:

e Randomly generated data payload of variable length

e 8 bits of header that determines the destination port

e 8 bits storing the random seed number used for the payload generation

Overview

The FPGA contains a few components that make up the entire switch. The routing algorithm
is handled by the scheduler within the FPGA to optimise the amount of throughput that
the switch can handleEl The scheduler has to maintain correctness while working towards
maximum efficiency. Random Access Memory (RAM) blocks also exist on the FPGA and
model the real world input and output ports.

The user space consist of the packet generator and validator which interface with FPGA.
They are responsible for generating packets with random destination ports and feed them
into the FPGA module. The validator then reads from the output RAM and ensures that
packets are routed correctly and no segments are dropped.

'There will be no decoder in the mainframe of the project and so any packet that is generated and sent
to the switch will pass through to the port specified.
>Throughput is defined as the number of packets received at the output port in one clock cycle.

™

b

3

¥

&\
l\\ 9

/)

!
|| 2. Design Archi

2.1 System Architecture

The design architecture of the system is as shown in Figure [2.1] where both software
components and hardware components are exhibited in the block diagram.

Inputs
P ——

Userspace Packet Packet

Generator Sorting Scheduler > Switch

L -,
ram01 } RAM
ram02

ram03

ram04

Userspace Validation

Cascade of 4 RAMs
at each input

Figure 2.1: Block diagram showing the overall functionality and flow of the system

6 Chapter 2. Design Architecture

The userspace packet generator is responsible for generating random packets each with:

e 8 bits of header representing the destination port

e 8 bits storing the random seed that the data is generated based upon

e variable length data payload up to 64 bits
These packets are then sent to the packet sorting fabric on the FPGA which will decide
which RAMs the packets will be sorted into based on the source port and the destination
port. Each of the 4 inputs to the Scheduler has a cascade of 4 RAMs which identify which
destination port the corresponding packet has to be routed to. The Scheduler then runs and
proceeds to route the packets from the source RAMs into the corresponding destination
port. The main aim of the scheduler is to maximise throughput by routing the most number
of packets through the switch at every clock cycle. The RAMs located at the output then
store these outputs. Each of the corresponding RAMs will only contain packets whose
destination port corresponds to that specific output. The final step in the system is the
Userspace Validation where the data stored in the memory locations of the output RAM will
be retrieve and used to validate the integrity of the packets being sent through the switch.

Hardware Section

The hardware section of the entire system consists of the the following blocks as shown
in Figure [2.2] The hardware segment of the system is responsible for storing and routing
the input packets into the correct destination output port. The hardware segment being
implemented on the FPGA interfaces with the userspace software program using the master-
slave architecture (CHECK). One thing to note is that the hardware architecture is not
affected by length of the packet that needs to be routed, it will continuously route that same
packet to the destination port until an ’end-of-packet’ identifier has been reached. This is
being transmitted as zeros of 32 bits in length.

Inputs

Scheduler Switch

SJesTelC

Packet
Sorting

ram01

ram02

ram03

ram04

Cascade of 4 RAMs
at each input

Figure 2.2: Hardware segment of the system

2.3 Software Section 7

2.2.1 Avalon Bus

The userspace talks to the FPGA using avalon bus. Userspace has access to various registers
which are registered to to the device drivers which communicate through ioctl 32 read and
write calls. In this project this is the only part that has not been evaluated on Verilator
because the slides actually show the real scenario for the assert signals.Figure [2.3]and 2.4]
shows the readdata and writedata transfer timing diagram that is used throughout in the

project.
clk : [
address {/ 7—_
read / _L_
(L1

chipselect __’I_I

LR ELCR S S S—

Figure 2.3: Avalon Bus Read Signal

clk

address

write

/ L1
chipselect L" | (L1
WTCEIEN S B —

Figure 2.4: Avalon Bus Read Signal

2.3 Software Section

The software segment of the system is responsible for generating the input packets and
validating the output packets after it has been routed through the switch. This consists of
the userspace packet generator and the userspace validator as shown in Figure 2.3] below.
The userspace packet generator uses a random number generator to generate data payload
of variable length of up to 64 bits in length. It also includes within that packet a header

8 Chapter 2. Design Architecture

containing the destination port and the seed number that is used in that generation. This
is done to ensure that at the validation side of the userspace, the software program can
regenerate the given packet using that same seed number to verify the integrity of the packet.
This will be explained in detail in a later section.

Userspace Packet

Generator

Userspace Validation

Figure 2.5: Software segment of the system

3.1

3.2

Infroduction

The project depends heavily on simulations, so a robust test suite is created for the sim-
ulations. Out of the various compilers available for simulations Verilator was chosen for
compiling the hardware code. An exhaustive test bench was created in C++ for interfacing
with the compiled hardware code. Now it should be noted that the hardware code that is
compiled is actually used in Quartus to compile it down on the hardware and therefore has
some nuances and quirks. For example, Altera’s compiler limits the number of iterations in
the for loop to 255 which Verilator does not. Furthermore there are many such differences
between the Verilator simulations and the actual hardware implementation and one should
be careful while experimenting.

Simulation Test Bench

Simulating Altera’s IP core in Verilator was an integral as well as the most challenging
part of the simulation. Since the project’s progress contained different IP cores like Fifo
, MUX and Ram. In the final design after many iterations several of these IP cores
were removed/replaced but that would not have been possible without getting a deeper
understanding of timing diagrams as well as the designed issues that needed to be resolved.

SwitchON can simulate altera’s IP core into the design using several caveats. For
instance, the RAM module is defined in altera_mf.v file in the eda simulation directly, but
that file is not standard i.e it cannot be compiled by Verilator, hence several of the other
components (100k lines) have to be removed. Further more several helper functions needs
to be added. Altera uses lots of tri state logic which does not simulate properly in Verilator,
these can be removed but then care must be taken to add extra warning lints for, they cause
the values to be used in block and no block. The veripool community is very helpful and

10 Chapter 3. Simulation

some of the scripts they provided using Veripool-perl was instrumental in simulating the
altsync RAMS. Again the idea was similar to converting the tri state logics to wire logics.

Component Simulation

The test bench can compile each component separately as well as the full model suite. The
ingenuity of such a modelling style allowed for amazing level of detailing that can be put to
each module. This This allowed to optimize each clock cycle and made us achieve really
high throughput through the scheduler. Each IP core has it’s quirks and though it was
frustrating when they didn’t work the expected, it was really a nice learning experience.

RAM Simulation

The simulation of altsync RAM was the most challenging part the project. First challenge
was actually to find the library in which the module was defined. Running grep system
wide did help to locate the module in the eda simulation directory of Quartus. But the RAM
that altera uses has lots of tri state logics which prevent the data from coming to the output
q port during verilator simulation, in Verilator’s defense it did warn about those tri-state
logics. Finally converting all such tri-states to wire leads to easy simulation of altsync RAM
in Verilator Simulating results for the particular sections is shown in Evaluation.

Conclusion

Verilator provides a really easy to use platform which is fast and actually simulates what
goes into the hardware. The compilation time is actually nothing compared to Quartus and
it provides a natural way to input any random signal into the model so that it can be tested
to it’s limit. Furthermore the output signals can be verified by just scripting the generated
signals. It does have a steep learning curve but it’s actually worth simulating.

I'There is a script by Todd Strader here https://github.com/twosigma/verilator_support. It
can convert the tri-state logics directly to wire logic. Also, for a quick solution just convert the tri-state
logics to wire and comment that section using appropriate verilator escape lint.

https://github.com/twosigma/verilator_support

4. Hardware Design

Interfacing with Software

This is the front interface of the hardware. The packet data coming from the user space
is received here. The main function of this module is to channel the packet data into
appropriate RAMs. These RAMs are symbolic of the input ports of a network switch.

Memory - RAM

The Random Access Memory(RAM) modules are used in the system to simulate the input
and output ports. These modules are implemented on the FPGA in the form of an embedded
memory [P block supported by the Altera’s Mega Wizard plugin in the Altera Quartus
software.

A RAM is typically a type of computer data storage that allows data items stored into
the memory module to be accessed quickly. It has typically much faster read and write
times but is a form of volatile memory that loses its stored data when it loses power

The Altera Embedded Memory IP Block

The RAM modules that are implemented on the FPGA are of the form of a Simple dual-port
RAM. This supports simultaneous one read and one write operations to different locations
which is important in this system to minimise the number of clock cycles required to access
data from the RAMs. Figure .1 below shows the inputs and outputs that are configured
for the RAM module. It takes in the input clock from the overall clock of the system, has a
word length of 32 bits and a storage space of 4096 words. These are controlled by the input
signals rden(read enable) and wren(write enable).

Figure 4.2 shows the timing diagram of the Altera RAM module.

12 Chapter 4. Hardware Design

I »| [31:0] data
[31:0] b——>

— > .
Can come from either [11:0] rdaddress

VGA_LED or Scheduler < e

RAM
> [11:0] wraddress

wren

Figure 4.1: Snippet of code showing the inputs and outputs attached to the RAM module

Signals Waves
Time L
clock =
wren =
wraddress[11:@] =| | [el ez
data[31:0] = | B P0O0OR0A |PPODOGER 00000000
rden =
rdaddress[11:@] =|| [B0l ez

BDa000ana DODODARA P0D0DOBE

Figure 4.2: Timing diagram of the read and write operations of the RAM

Network Fabric

A network switching fabric is the hardware topology of the network that is laid out and
is responsible for transporting the input packet to its respective output port. The network
fabric being employed in this project is the crossbar architecture. The crossbar architecture
is basically a network topology that is in the form of a matrix as shown in Figure 4.3|below:

Crossbar Switch Model

In this project, a single layer 4 x4 topology with 4 inputs and 4 outputs is utilised. The
Figure [4.3] above illustrates how every input is being connected to every output by the
intersections of the matrix, termed crosspoints. The implementation of the crossbar switch
model is done on the FPGA. Each input to output connection is completely independent
of each other and can therefore support simultaneous communications, except in the case

4.2 Network Falbric 13

Input 1 - = 4

Input2 g = B

Input 3

Input4

Outputl OQutput2 Output3 OQutputd

Figure 4.3: Illustration of the Crossbar Architecture that will be responsible for the net-
work switching fabric

when two ports wish to use the same output port.

How the Crossbar Switch Works

The crossbar switch architecture works in a similar way to that of active addressing in an
LED(Light emitting diode) matrix. The inputs are connected to every output by lines that
can be turned on and off depending on the destination of the source packet. For example
in Figure 4.3] the orange line shows how the input 1 is able to send a packet through
the network fabric to output 2 by turning on it’s horizontal line and the vertical line that
corresponds to output 2. As mentioned earlier, the lines are independent of one another and
therefore in a single time slot, both input 1 and input 2 can send packets to outputs 2 and 3
respectively without colliding. Theoretically and in some cases practically it is possible to
get nE| number of packets in the output.

Implementation in the system

In our implementation, 16 RAM modules are used at the input port of the network fabric.
This means that each input port of the network fabric has exactly 4 RAMs, one for each
output port. They have the above mentioned capacity and word length. This is as shown
in Figure d.4] The functionality of these input rams are to store the packets distributed
according to their output ports. When the scheduling algorithm runs and selects the packet
to be routed through the network fabric to the output ports, the stored packets are accessed
and removed from the input RAMs and routed through. The exact same RAMs are utilised
in the output port for storage of the routed packets.

!where n is number of output ports,in this case 4

14 Chapter 4. Hardware Design

4 N

input_ramO00

input_ramO01

input_ram02

input_ram03 Inputl . 9—
\- J

Input2 B

Figure 4.4: An exploded view of a single input port to the network fabric

Scheduling Algorithm

The Scheduling algorithm is at the core of the network switch. The scheduler makes all the
decisions regarding the routing of the packets. It looks at the incoming packets and based
on the header decides the output port of the packet and routes the content accordingly.

The first preference to the scheduler is always correctness; to make sure none of the
packets are lost. The priority is that all the information is transferred as required. Then
comes the efficiency. How fast the scheduler can route the data on the input ports utilizing
the least number of clock cycles. The scheduling algorithm for our project was also devel-
oped in similar two stages.

Another important thing to add is that the hardware code is agnostic to the size of the
packet. It marks the start of a packet with a header, containing the port information, fol-
lowed by unknown number of 32 bit words followed by a 32-bit zero value to mark the end
of packet. Once the zero value is encountered, the Scheduler understands that the packet
has ended and prepares itself for the next packet.

One performance constraint with both the designs is the RAMs that have been used to
simulate the input and output ports. 3 clock cycles are required to analyze and transfer each
32 segment of the data. This is required by the RAM. It takes one clock cycle to increase
the address and another for the output to appear. While working with two clock cycles also,
sometimes the data would appear late resulting in consistent errors. Another clock cycle has
to be spared to make sure that the data is stabilized. So the speeds that are achieved can be

4.3 Scheduling Algorithm 15

scaled by an appropriate factor considering the real world scenario.

We here discuss the Scheduler algorithm. The initial design focuses only on correct-
ness while the second one tries to improve the performance with some additional hardware
logic. Both designs will be discussed below.

Single Input Queue Scheduler

The initial design of the scheduler was a simple crossbar switch. The scheduler looks at
the head of the packets on different ports, and simply routes the data according to that
information. In case of collision, the data is transferred one by one, holding the data at one
of the ports while the other one is transferred and then transferring the data from the next
port.

The preference in case of a collision is always given to the lower numbered port. What this
means is that if there are two packets at ports 1 and 2 both waiting to go to the output port 2,
the preference will always be given to the packet at port 1. The upside to this approach is
that it is very simple to implement. The downside being that if the next packet on port 1
also has to go to port 2, it will still precede the packet on port 2. This can lead to starvation
and theoretically the port 2 packet may never flow through, if all the packets on port 1 are to
destined to port 2.

The way the scheduler achieves this is by storing state of different input ports. One
variable per port to store the destination port of the current packet coming in through the
input port. Another variable is used to indicate the End-of-packet signal which meant the
scheduler had to to refresh its transfer information in the next cycle.

PPS Architecture

In the second part of the project an attempt to optimize the performance by adding hardware
complexity is discussed. Instead of using one RAM per port, four (the number of output
ports) such RAMs are used per port. For the user space, the packets are still being sent to
the four input ports instead of sixteen. However, a layer inside the hardware divides these
packets based on their output destination.

Figure {.5] show how the Scheduler looks like. the inp[4][4] signals are the input sig-
nals from the rams. input_ram_rd_add signals control the address of the ram from which
data is being read. The outp[4] signals are the output signals which contain the packets on
their destination port and out_ram_wr are to control writes to the output RAMs.

The way it helps is that segregation of packets based on their destination ports greatly
improves timing efficiency. A packet meant for the output port two does not have to wait
behind another packet meant for output port one. It eliminates the time where one or more
output ports has to wait lying empty because none of those packets were at the front of the

16 Chapter 4. Hardware Design

[31:0] inp[4][4]
total_time}——p»

write_enable out_ram_wr[4]

[1:0] reset_rams outp[4]

Scheduler

input_ram_rd_add[4][4]

— ™| [11:0] input_ram_wr_add[4][4]

input_ram_rden[4][4] }—————»

ﬁ>c|k

Figure 4.5: Block Diagram of the Scheduler

queue on their respective input ports.

This approach optimizes for different ports but still faces the starvation problem faced
by the initial design because here also the preference always goes to the packet on the port
one. It still performs better because packets for other ports does not have to be stuck because
the front packet cannot pass through.

Figure 4.6]and {.7] give the timing diagrams of the scheduler implemented. While Figure
[.6)shows the situation where packets to different output ports appear on the input ports, the
Figure shows the case, where all packets are meant for the same output port.

Performance Comparison

A comparison of performance between both Scheduling algorithm is done to investigate the
differences. Random test runs of 100 packets of lengths ranging from 4 to 64 uniformly
spread across the source ports but randomly across the destination ports. Figure {.8] shows
the relative average speeds achieved by using the two different Schedulers. The performance
statistics for the initial design is shown in red while blue highlights the performance of the
optimized scheduler.

4.3 Scheduling Algorithm 17

Signals
Time

clk=
inp(@)(@)[31:0] =
inp(1)(1)[31:0] =
inp(2)(2)[31:@] =
inp(3)(3)[31:0] =

outp(@)[31:0] < [E bo00EEeR
outp(1)[31:@] = p0000B0
outp(2)(31:0] < [0o00e0an
outp(3)(31:0] < [E 00000000
total _time[31:0] = pROOOR p0A0E3 |BRODORR4 | DEDADEAS

Signals

Time
clk=
inp(@)(@)[31:0] =
inp(1)(@)[31:0] =[S)
inp(2)(0)[31:0] = | [T L I N N N N]
inp(3)(@)[31:0] =
oo
total_time[31:0] = |[ELEELES 00000000 i

Figure 4.7: Scheduler timing diagram showing packets to the same output port

It is clearly visible that the optimized algorithm shows higher performance both in terms of
average as well as the most optimal performance. The performance of the initial design is
lower which is consistent with the expectation from the algorithm. While it is easy to see
that the average performance is higher, the worst case scenario for both cases occurs when
all the packets are scheduled to the same output port. The calculation for such a case is as
follows: Since, 32-bits of data is transferred every three clock cycles:

32
Speed = ?bits/cycle

32
3x20x%x 1079

Speed = 0.533 x 10°
Speed = 508.626 Mb/s

Speed =

This comes out to be consistent with the data presented in the test runs. If the test bench
is modified to ensure that all packets are sent to the same output port, the transfer speed
matches the above mentioned speed up to three decimal places.

This also gives a logical explanation for the wider variance seen in the optimized algorithm

43.3

18 Chapter 4. Hardware Design

Plot Comparing the Old and the New Scheduler
2000 T T

1600

Transfer Speed (Mbps)
g
I
N
Y
!
A
~
) \\
14
N
™
//
!

800 — -

Number of RRerations

Figure 4.8: Comparison plot of the performance achieved with the two Scheduler algo-
rithm

graph as compared to the initial one. Seen the spectrum for the optimized algorithm is
higher with a higher average, the variation and the peaks are also higher.

The whole suite

Figure [4.9]shows the block diagram of the entire suite and its interaction signals with the
avalon slave bus. Figure [4.10]and .TT|show the timing diagrams of the flow of packets to
and from the user space. It can be seen that the sanctity of the packets is maintained in its
movement through the system.

4.3 Scheduling Algorithm 19

reset

—— Writedata [31:0]
readdata[31:0]

\)

write
From
Avalon
Bus R read
VGA_LED(INPUT
—® chipselect ()
——p| address [3:0]
> clk
Figure 4.9: Flow of packet from the user space
Signals
Time
clk=
chipselect =

write =l

writedata[31:0] = [R 17 1 R

S55E480A8 20000000

address[3:0] =) %

read =I

readdata[31:0

Signals
Time
chipselect 5
write =

clk=

writedata[31:0] =
address[3:0] =
read =
readdata[31:0] =

Figure 4.10: Flow of packet from the user space

Waves
700 ns

LU P T L L T P L P L P P P P P P L T L L L LT

00000000
E

0000000

ZFFASB8@ /5DBD@77 480) 00 3000 |282944E1 |ZD6BEZBA 00000000

Figure 4.11: Flow of packet to the user space

5. Software

01100100

The software side talks to the Hardware using the ioctl32 calls. It also generates the packets
which are to be routed through the Switch. Furthermore it reads back from the Output
RAMS and locally generates the packet and verifies it, if all packets pass the verification it
then calculates the throughput through the Switch for that iteration.

5.1 Implementation details

The userspace consists of:-
e Packet Generator: It generates seeded random number of packets upto NUM_PACKETS(defined
in packetgen.h file).
e Validator: After packet transfer is complete validator runs over the contents of each
RAM verifying for consistency in terms of content and port matching.

5.1.1 Packet Generator

Packet Generator consists of packetgen.c and packetgen.h. The entry point to these modules
is through main.c. Based on the seeded input value it generates a 32 bit random number
of which each 8 bits except the first 2 MSB bits have their own minimum requirements
which are again defined in packetgen.h header file.

Once the packet generator has sent all the packets using the ioctl32 calls before shutting
itself off, it sends the WRITE_ENABLE_SCHEDULER and READ_ENABLE opcodes to
the module which kicks in the Scheduler.

5.1.2 Validator

After the FPGA processing when the packets are routed to their appropriate output ports
(modeled by memory locations) the validator runs and checks that the packets should be

5.1 Implementation details 21

Last Bits | Output Port
0000 0000 | Port O
0000 0001 | Port 1
0000 0010 | Port 2
0000 0011 | Port 3

Table 5.1: I/0O Mapping from RAM

stored on correct memory locations. As discussed above, the generated packet consists
of random sequence of bits with the last two bits representing the destination port. The
validator makes sure that this values matches the memory space in which the packet is
stored and reports any errors encountered.

The validator validates the packets which are received from the output RAMS. Now
using the stored seed, the validator seeds itself to stored seed and then starts generating the
packets locally. Now each octal of the received packet part is compared against the locally
generated octal, if match happens it that part of the packet is marked OK and the validator
moves to check other packet. Now should a packet not match the generated seed, error is
thrown and the program exits. For the simulation scenario,it is ensured that none of the
packets are dropped and none of the packets are wrongly stored.

After all the validation passes, the validator sends an OP-Code to the FPGA which
then returns the total_clock_cycles it took to transmit that data. Using this information the
throughput of the Switch for that particular iteration can be calculated. It has been observed
that both in case of PPS and Single Input Architecture the throughput fairly remains constant
with a small swing along the average 4+ 200 Mbits/s, which is fair in terms of packets that
are being sent. In other words since the packets are being generated randomly it might so
happen that the generation might be skewed towards a particular output port, which leads to
number of cycles being increased as packets are now queued thus leading to more time for
transfer. This issue will be fairly common in both the architecture because all the packets
can now go to only one part,so in each clock cycle a single packet will be transferred, in
other words packet transfer would be linear.

Cé. Evaluation

6.1 FPGA Switch Performance

Having implemented and tested the functionality of the FPGA switch, the next step would
be to evaluate the performance of the switch and how it performs under various types of
load.

Plot of Transfer Speed against Iteration Number for 100 Packets.
T

Iteration Number

Figure 6.1: Plot showing the data transfer speed over 25 iterations

The first test is to measure and find the average speed of data transfer that the switch is
capable of achieving. This is shown in Figure[6.I]above. It can be seen that there are massive
fluctuations in the data plot, there are however some points to note which are circled in

6.1 FPGA Switch Performance 23

blue. These points are outliers in the data plot that occurs whenever there is a concentrated
number of packets that are sent to a specific port. Due to the random distribution of packets
that are sent to each destination port, there will be a case where for example 50 of the 100
packets generated are destined to output port 3. Such a data point will then result in an
outlier where the data transfer speed is severely crippled because a higher number of clock
cycles are required to process that concentration of packets destined for a single output port.
The average transfer rate of the switch including these outliers still remains at an impressive
speed of approximately 1400 Megabits/second (Mbps)

5000 — Plot of Number of Clock Cycles against Transferred Data Size

2500

Number of Clock Cycles

2000

1
Transferred Data Size (Bytes) 10*

Figure 6.2: Plot showing the the number of clock cycles needed to process a given data
size

The second test involves incrementing the total transferable data size to investigate how
the number of clock cycles required to complete the routing changes. It can be seen from
the Figure [6.2]that the number of clock cycles required increments linearly with increasing
data sizes. The gradient of the slope gives the data transfer speed at that given point, seeing
as how the graphs proves to be a linear plot, it is safe to say that the transfer speed of the
switch remains constant regardless of the transferable data size. This means that under
heavy data loads, the switch will still be able to perform at its maximum capacity.

Using the simulated Switch implemented in hardware, it can be concluded that for all real
cases in which the packet arrival can be Poisson, PPS architecture would be really helpful
because then Head of line blocking can be avoided and throughput would increase as can be
seen from the results. Furthermore it’s futile to expect that the throughput would increase in
the order of the input ports because of the distribution in which the packets arrive. Though
this can be avoided using fixed input ports for a particular packet sizes, but is not entirely
avoidable.

Lessons Learnt

Throughout the course of the project, there are a few lessons to be learnt:

e Hardware is hard. Like seriously programming hardware is very different from
working on just purely software. In software, logic take precedence where a good
logic will mean an efficient and perfectly functioning piece of code. This differs
greatly in hardware where logic has to be perfect but also timing of every hardware
module must be taken into consideration due to data stability reasons,few modules
might be slow in giving out the data so everything cannot work as per the designed
clock cycles.

e Simulating what hardware does in software that produces timing diagrams is the best
way to debug hardware issues. Timing diagrams while tedious and time-consuming
to do and set up, provide an insight into what the hardware is actually doing, saving
you time in the end.

e While simulations provide insight, it may not be truly representative of what actually
goes on in hardware. More often than not, the simulations hold true. But every once
in awhile, it goes way off tangent so always check what the actual hardware is telling
you. For example there were cases in which Verilator would actually simulate the

7.2 Future Work 25

altsync ram, but there would be no output on the q port. Furthermore Quartus limits
the number of iterations to 255 in a for loop, but since verialtor is platform agnostic it
synthesizes the code,hence there might be a case in which the logic would work in
Simulation only to fail in hardware.

e Hardware documentation is not as robust as those that you will find on open sourced
stuff such as python libraries. Simulating and creating test benches early and often is
a nice way to debug. Also the simulated code should be as close as possible to the
code synthesized in Quartus.

7.2 Future Work

These are the below directions that can be taken to take the project forward.
e DMA can be implemented so that the simulation can be run for large number of
packets.
e Different scheduling algorithms, which are less greedy in practice can be simulated
to check the perfomance.

Figure 7.1: Finally

8. Appendix

File Listings

Following are the files included:

1. Hardware

(a) VGA_LED.sv - Interfaces with Avalon slave. Responsible to handle the incom-
ing packets from the Slave bus.

(b) Scheduler.sv - Routes the data through the Switch. Contains the PPS algorithm.

(c) Buffer.sv - Interfaces with the avalon slave again. Responsible to send the
packets through the slave bus to the validator.

(d) oScheduler.sv - The old scheduler implementation with single input queues.
For reference purposes.

(e) Does not include the RAM ipcore files generated by Mega Wizard required for
simulation.

2. Verilator

(a) vgacounter.cpp - cpp file used to simulate the top level vcd. Includes appropri-
ate signal changes throughout the Switch.

(b) schedulercounter.cpp - cpp file to simulate the scheduler in verilator.

(c) ramcounter.cpp - cpp file to simulate the ram

(d) buffercounter.cpp -

(e) Makefile

(f) Does not include the modified RAM files used by verilator for compilation.

3. Software

(a) main.c - top level file used to generate and send packets through the avalon bus.

(b) packetgen.h - header file for the packet generator.

(c) packetgen.c - packet generator file reponsible for generating the packets. Used
by main.c

8.1 File Listings 27

(d) validator.c - validator responsible for reading the packets from output RAMs.
Validates the count, sequence and length and also calculates the transfer speed.

(e) vga_led.h - header file for vga_led.c

(f) vga_led.c - vga_led.c file similar included as part of lab3, with code changes to
support 32 bit transfers, 4-bit addresses and read from the slave.

(g) Makefile - make main for main.c and make validator for validator.c. make for
vga_led.c and insmod for installing it to the kernel

28

Chapter 8. Appendix

Hardware:VGA_LED.sv

// START MODULE_NAME

/1l
/1l
/1l
/1l
/1
/1
/1l
/1l
/1l
/1

Module Name . VGA_LED

Description : Reads values from RAMS and enables the scheduler.

Limitation : None

Results expected: Enables the Scheduler and Buffer, communicate with
ioctl .

> //END_MODULE NAME

module VGA_LED(input logic clk ,
input logic reset ,
input logic [31:0] writedata,
input logic write , read,
input chipselect ,

input logic [3:0] address ,

output logic [7:0] VGA_R, VGA_G, VGA_B,

output logic VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK n,
output logic VGA_SYNC n,

output logic [31:0] readdata);

// Naming convention is the part of module the signal is for
followed by

// the use of the signal, written in camel case. For example,
fifo_in

logic [31:0] inp [4][4], outp[4], input_ram_wr_in[4][4];

logic [11:0] input_ram_rd_add [4][4], input_ram_wr_add[4][4];

logic input_ram_rden [4][4], input_ram_wren[4][4];
logic out_ram_wr [4];

// logic signals to enable write and read to the output RAM.

logic write_enable , read_enable;
// signal to reset rams. Not being used right now. Was giving us
problems .

// We burn the hardware again after each test run of packets.

// The only visible option.

logic [1:0] reset_rams ;

// Calculates the number of clock cycles it takes to transfer the
entire

// data from the input rams. Necessary to calculate the effective

speed .
logic [31:0] total_time ;
logic [1:0] port[4];

logic eop[4];

85

86

8.1 File Listings

29

initial begin

reset_rams = 0; write_enable = 0; read_enable = 0; total_time = 0;
for(int i=0; i<4; i++)begin
for(int j=0; j<4; j++)begin
input_ram_rd_add[i][j]
input_ram_wr_add[i][]]
input_ram_rden[i][]j] =
input_ram_wren[i][j]

1l
=)

ool

end

port[i] = O;

eopl[i] = 1;
end

end

//Incoming packets modeled as 16 rams, 1 for each combination of
input and
// output port
RAM input_ramOO (. clock (clk), .data(input_ram_wr_in[0][O0]),
.rdaddress (input_ram_rd_add [0][0]), .rden(input_ram_rden[O][0]),
.wraddress (input_ram_wr_add [0][0]), .wren(input_ram_wren
[01[01), .q(inp[01[0]));
RAM input_ramO1 (. clock(clk), .data(input_ram_wr_in[O][1]),
.rdaddress (input_ram_rd_add [0][1]), .rden(input_ram_rden[O][1]),
.wraddress (input_ram_wr_add [0][1]), .wren(input_ram_wren
[0I[1]), .qCinp[O][1]));
RAM input_ramO2 (. clock(clk), .data(input_ram_wr_in[O0][2]),
.rdaddress (input_ram_rd_add [0][2]), .rden(input_ram_rden[O0][2]),
.wraddress (input_ram_wr_add [0][2]), .wren(input_ram_wren
[01[21), .q(inp[0][2]));
RAM input_ramO3 (. clock(clk), .data(input_ram_wr_in[O0][3]),
.rdaddress (input_ram_rd_add [0][3]), .rden(input_ram_rden[O0][3]),
.wraddress (input_ram_wr_add [0][3]), .wren(input_ram_wren
[01[31), .q(Cinp[O][3]));
RAM input_ram10 (.clock(clk), .data(input_ram_wr_in[1][0]),
.rdaddress (input_ram_rd_add [1][0]), .rden(input_ram_rden[1][0]),
.wraddress (input_ram_wr_add [1][0]), .wren(input_ram_wren
[11[0]), .qCinp[1][0]));
RAM input_raml1 (.clock(clk), .data(input_ram_wr_in[1][1]),
.rdaddress (input_ram_rd_add[1][1]), .rden(input_ram_rden[1][1]),
.wraddress (input_ram_wr_add[1][1]), .wren(input_ram_wren
[LI[1]), .qCinp[1][1]));
RAM input_raml12 (.clock(clk), .data(input_ram_wr_in[1][2]),
.rdaddress (input_ram_rd_add [1][2]), .rden(input_ram_rden[1][2]),
.wraddress (input_ram_wr_add [1][2]), .wren(input_ram_wren
[11[21), .q(inp[11[2]));
RAM input_raml13 (.clock(clk), .data(input_ram_wr_in[1][3]),
.rdaddress (input_ram_rd_add [1][3]), .rden(input_ram_rden[1][3]),
.wraddress (input_ram_wr_add [1][3]), .wren(input_ram_wren
[11[31) . .qCinp[11[3])):
RAM input_ram20 (.clock(clk), .data(input_ram_wr_in[2][0]),
.rdaddress (input_ram_rd_add [2][0]), .rden(input_ram_rden[2][0]),

99

100

101

102

103

104

105

106

107

108

109

111

Chapter 8. Appendix

.wraddress (input_ram_wr_add [2][0]), .wren(input_ram_wren
[21[01), .q(inp[2][0]));
RAM input_ram21 (.clock(clk), .data(input_ram_wr_in[2][1]),
.rdaddress (input_ram_rd_add [2][1]), .rden(input_ram_rden[2][1]),
.wraddress (input_ram_wr_add [2][1]), .wren(input_ram_wren
[21[11), .q(inp[21[1]1));
RAM input_ram?22 (.clock(clk), .data(input_ram_wr_in[2][2]),
.rdaddress (input_ram_rd_add[2][2]), .rden(input_ram_rden[2][2]),
.wraddress (input_ram_wr_add [2][2]), .wren(input_ram_wren
[2102]), .q(inp[2][2]));
RAM input_ram23 (.clock(clk), .data(input_ram_wr_in[2][3]),
.rdaddress (input_ram_rd_add [2][3]), .rden(input_ram_rden[2][3]),
.wraddress (input_ram_wr_add [2][3]), .wren(input_ram_wren
[21[31) . .q(inp[2][3]1));
RAM input_ram30 (. clock(clk), .data(input_ram_wr_in[3][0]),
.rdaddress (input_ram_rd_add [3][0]), .rden(input_ram_rden[3][0]),
.wraddress (input_ram_wr_add [3][0]), .wren(input_ram_wren
[31[01), .q(inp[3]1[0]));
RAM input_ram31 (.clock(clk), .data(input_ram_wr_in[3][1]),
.rdaddress (input_ram_rd_add [3][1]), .rden(input_ram_rden[3][1]),
.wraddress (input_ram_wr_add [3][1]), .wren(input_ram_wren
[31[11), .q(inp[31[11));
RAM input_ram32 (.clock(clk), .data(input_ram_wr_in[3][2]),
.rdaddress (input_ram_rd_add [3][2]), .rden(input_ram_rden[3][2]),
.wraddress (input_ram_wr_add [3][2]), .wren(input_ram_wren
[3102]), .q(inp[3][2]));
RAM input_ram33 (.clock(clk), .data(input_ram_wr_in[3][3]),
.rdaddress (input_ram_rd_add [3][3]), .rden(input_ram_rden[3][3]),
.wraddress (input_ram_wr_add [3][3]), .wren(input_ram_wren

[31031), .qCinp[3][3]));

Scheduler scheduler (.%) ;
Buffer buffer (.x);

always_ff @(posedge clk)begin

if (reset_rams == 1) begin
reset_rams = 2;

end

else if(reset_rams == 2)begin
reset_rams = 0;

end

for(int 1=0; i<4; i++) begin
for(int j=0; j<4; j++) begin
if (input_ram_wren[i][j])begin
input_ram_wren[i][j] = O0;
input_ram_wr_add[i][j] = input_ram_wr_add[i][j] + 1;
end
end
end

if (chipselect && write) begin

149

160

161

179

180

181

8.1 File Listings

31

case (address)

0

eop

end

1

end

2

begin

// 1f the previous packet has finished

/! transferring (characterized by 32 bit
!/l port

begin

begin

zero values , the

information has to be re—established from the
/! packet header.

if (eop[0] && writedata) begin
eop[0] = 03
port[0] = writedata[1:0];

end
// If in between transfer of a packet, continue
// transferring to the same port.
if (!eop[0]) begin
for(int 1=0; i<4; i++)begin
if (port[0] == i) begin
input_ram_wr_in [0][i] = writedata;
input_ram_wren [0][1] = 1;
end

end
end

// 1If the end of packet is reached (32 bit

zero value

// signal is set to high. In the next cycle the port

// information will be re—established.
if (! writedata)begin

eop[0] = 1;
end

if (eop[1l] && writedata) begin
eop[l] = O;
port[1] = writedata[1:0];
end
if (leop[1]) begin
for(int 1=0; i<4; i++)begin

if (port[1] == i) begin
input_ram_wr_in[1][i] = writedata;
input_ram_wren[1][i1] = 1;
end
end
end
if (! writedata)begin
eop[l] = 1;
end

if (eop[2] && writedata) begin
eop[2] = O;
port[2] = writedata[1:0];
end

32 Chapter 8. Appendix

182 if (leop[2]) begin

183 for(int 1i=0; i<4; i++)begin

184 if (port[2] == i) begin

185 input_ram_wr_in[2][i] = writedata;

186 input_ram_wren [2][1] = 1;

187 end

188 end

189 end

190 if (! writedata)begin

191 eop[2] = 1;

192 end

193 end

194

195 3 : begin

196 if (eop[3] && writedata) begin

197 eop[3] = O;

198 port[3] = writedata[1:0];

199 end

200 if (!eop[3]) begin

201 for(int 1=0; i<4; i++)begin

202 if (port[3] == i) begin

203 input_ram_wr_in[3][i] = writedata;

204 input_ram_wren[3][1] = 1;

205 end

206 end

207 end

208 if (! writedata)begin

209 eop[3] = 1;

210 end

211 end

212 /' Special signal to control the flow of data within the

213 // switch from input port to output port. Required to

214 /1l specifically determine the number of cycles it took for

215 // data transfer and hence the speed.

216 15 : write_enable = 1;

217 // Controls the read from the output rams. Not really

218 // necessary , but we have added this in our user space
code

219 // and may have a valid use case.

220 14 : read_enable = 1;

21 // Reset all rams. Not being used.

222 13 : begin

223 for(int 1i=0; i<4; i++)begin

224 for(int j=0; j<4; j++)begin

225 input_ram_wr_add[i][j] = O;

226 end

7 end

228 reset_rams = 1;

229 end

230 endcase

231 end

232 else begin

SR U S Y

2 G

S O

1

238

239

240

8.1 File Listings

33

// Disable rights to all rams, if write
for(int 1=0; i<4; i++)begin
for(int j=0; j<4; j++)begin
input_ram_wren[i][j] = O0;
end
end
end
end

2421 endmodule

was low.

34

Chapter 8. Appendix

Hardware:Scheduler.sv

// START MODULE_NAME

/1l
/1l
/1l
/1l
/1
/1
/1l
/1l
/1l
/1

Module Name . Scheduler

Description : Reads values from RAMS and schedules to prevent
collisions .

Limitation : NONE
Results expected: Packets routed to proper ports.
/1!

> //END_MODULE NAME

module Scheduler(input logic clk,

input logic [31:0] inp[4][4],

input logic write_enable ,

input logic [1:0] reset_rams ,

input logic [11:0] input_ram_wr_add[4][4],

output logic [31:0] total_time ,

output logic out_ram_wr[4],

output logic [31:0] outp[4],

output logic [11:0] input_ram_rd_add[4][4],
output logic input_ram_rden [4][4]) ;

// Write cycle, to make sure that the signal is stable on the output
wires

// of the RAMs. It usually takes three clock cycles for the data to
// stabilize: one clock for the address to be incremented, second for
the

// data to be appear on the output wire. Theoritically , it should
take two,

//but sometimes there was a delay and it didnt. Hence, added the
third .

logic [1:0] write_cycle;

// For end of packets.

logic eop[4];

/!l Source packet information.

logic [1:0] sport[4];

/! To determine if the total time should be incremented.

logic time_inc;

initial begin

write_cycle = 0;
for(int i=0; i<4; i++) begin

eop[i] = 1;

sport[i] 0;

8.1 File Listings 35

45 end

46 end

47

18 always_ff @(posedge clk) begin

49 // Reset ram code. Not being used.

50 if (reset_rams) begin

51 for(int 1i=0; i<4; i++) begin

52 for(int j=0; j<4; j++) begin

53 input_ram_rd_add[i][j] = O;

end
end

56 end

58 // If the write enable is high.

59 if (write_enable) begin

60 time_inc = 0;

61 for(int 1i=0; i<4; i++)begin

62 for(int j=0; j<4; j++)begin

63 // We tried setting these read signals high once and
for

64 // all in the beginning, but if the ram is empty
this

65 // tends to go low. Hence, doing this in every cycle
. May

66 // be a better way, but going with brute force to
avoid

67 // any unnecessary nuisance ,

68 input_ram_rden[i][j] = 1;

69 // time_inc = 1 if for any ram, the read address is
less

70 // than the right address, which means there is data
to be

7 // read.

7 time_inc = time_inc |

. (input_ram_rd_add[i][j] <
input_ram_wr_add[i][j]);

74 end

75 end

76 total _time = total_time + time_inc;

78 if (write_cycle==2) begin

79 write_cycle = 0;

80 // Here i represents the output rams and corresponding j
o1

81 // represent the input ram from which the information is

82 // flowing. So, in essence internally its a 16x4 flow
network .

83 for(int i=0; i<4; i++)begin

84 for(int j=0; j<4; j++) begin

85 // Similar to the code in VGA_LED.

86 // 1f eop is reached and there is a next packet,

set

94

95

96

98

99

100

101

115

116

117

118

36

Chapter 8. Appendix

//eop low and set the port informtion.
if (eop[i] && inp[jl[i] &&
input_ram_rd_add[j][i] <

input_ram_wr_add[j][i]) begin

eop[i] = O;
sport[i] = j;
end
// 1If eop is not reached(eop is low), check from
which
// input roam is the information is flowing,
transfer
// the word and increment the address for the
next
/l word. Also, if the word is empty, set eop
high .
if (leop[i] && sport[i]==j)begin
outp[i] = inp[jl[il;
out_ram_wr[i] = 1;
input_ram_rd_add[j][i] = input_ram_rd_add[]j
il + 1;
if (linp[j][i])begin
eop[i] = 1;
break ;
end
end
end
end
end
else begin
write_cycle = write_cycle + 1;
for(int i=0; i<4; i++) begin
// Set write enable signals to the rams low.
out_ram_wr[i] = O0;
end
end
end
end

endmodule

8.1 File Listings

Hardware: Buffer.sv

//START MODULE_NAME

/1l
/1l
/1l
/1

i

/1l
/1l
/1

/1

Module Name : Buffer

Description : Stores the data coming from Scheduler into the
RAMS

Limitation : NONE

Results expected: Packets stored with appropriate lengths to proper
RAM.
/1!

> //END_MODULE NAME

s module Buffer(input logic clk,

input logic chipselect , read, read_enable,
input logic [1:0] reset_rams ,

input logic [3:0] address ,

input logic [31:0] outp[4],

input logic out_ram_wr[4],

input logic [31:0] total_time ,

output logic [31:0] readdata);

// Output RAM signals. Read & Write address, enable signals and
output

/l signals.

logic[11:0] ramO_rdaddress, raml_rdaddress, ram2_rdaddress,
ram3_rdaddress;

logic[11:0] ramO_wraddress, raml_wraddress, ram2_wraddress,
ram3_wraddress ;
logic ramO_wren, raml_wren, ram2_wren, ram3_wren;

logic ram0O_rden, raml_rden, ram2_rden, ram3_rden;
logic[31:0] ram0O_q, raml_q, ram2_q, ram3_q;

// read cycle signals to ensure that address is incremented only
once

// while reading from the RAM. We toggle these logic signals to
ensure

// that all the work at Buffer happens only during one clock cycle
out

// of the two used by the Avalon bus.

logic read_cycle0, read_cyclel , read_cycle2, read_cycle3;

// Four output RAMs that model the four output ports.
RAM output_ramO (. clock(clk), .data(outp[0]), .rdaddress(
ram(0_rdaddress) ,

37

16

48

49

66

38

Chapter 8. Appendix

.rden(ramO_rden), .wraddress(ramO_wraddress), .wren(ramO_wren)
.q(ram0_q));
RAM output_raml (.clock(clk), .data(outp[1]), .rdaddress(
ram]l_rdaddress),
.rden(raml_rden), .wraddress(raml_wraddress), .wren(raml_wren),,
.q(raml_q));
RAM output_ram?2 (.clock(clk), .data(outp[2]), .rdaddress(
ram?2_rdaddress) ,
.rden(ram2_rden), .wraddress(ram2_wraddress), .wren(ram2_wren),
.q(ram2_q));
RAM output_ram3 (.clock(clk), .data(outp[3]), .rdaddress(
ram3_rdaddress) ,

.rden(ram3_rden), .wraddress(ram3_wraddress), .wren(ram3_wren),
.q(ram3_q));
initial begin
ram0_wraddress = 0; raml_wraddress = 0; ram2_wraddress = 0;
ram3_wraddress = 0;
ram(QO_rdaddress = 0; raml_rdaddress = 0; ram2_rdaddress = 0;
ram3_rdaddress = 0;
ramO_wren = 0; raml_wren = 0; ram2_wren = 0; ram3_wren = 0;
ramO_rden = 0; raml_rden = 0; ram2 _rden = 0; ram3_rden = O0;
read_cycle0 = 1; read_cyclel = 1; read_cycle2 = 1; read_cycle3 =
1;
end

// We store the values in the outp[i] signals in the RAM passed by
the
// Scheduler along with the write signals controlled by the same.
// Here we are delaying the storage by one clock cycle just to make
sure
// that the signal is strong when we save it to the RAM.
always_ff @(posedge clk) begin
if (reset_rams)begin
ram(0_wraddress <= 0; raml_wraddress <= 0; ram2_wraddress <= 0;
ram3_wraddress <= 0;
end
if (out_ram_wr[0])
if (ramO_wren)
ram(0O_wraddress <= ramO_wraddress + 1;
else
ram(0_wren <= 1;
else
if (ram0_wren)begin
ramO_wren <= 0;
ram(0O_wraddress <= ramO_wraddress + 1;
end

if (out_ram_wr[1])
if (raml_wren)
raml_wraddress <= raml_wraddress + 1;
else

8.1 File Listings 39

83 raml_wren <= 1;

84 else

85 if (raml_wren)begin

86 raml_wren <= 0;

87 ram]l_wraddress <= raml_wraddress + 1;
88 end

90 if (out_ram_wr([2])

91 if (ram2_wren)

92 ram2_wraddress <= ram2_ wraddress + 1;
93 else

94 ram2_wren <= 1;

95 else

9% if (ram2_wren)begin

97 ram2_wren <= 0;

98 ram?2_wraddress <= ram?2_ wraddress + 1;
99 end

100

101 if (out_ram_wr[3])

102 if (ram3_wren)

103 ram3_wraddress <= ram3_wraddress + 1;
104 else

105 ram3_wren <= 1;

106 else

107 if (ram3_wren)begin

108 ram3_wren <= 0;

109 ram3_wraddress <= ram3_wraddress + 1;
110 end

1 end

112

13 // The read signals to all the RAMs are turned high as soon as the

14 // read_enable signal is turned on.

115 always_ff @(posedge clk) begin

116 if (read_enable)begin

117 ramQO_rden <= 1; raml_rden = 1; ram2_rden = 1; ram3_rden = 1;
18 end

119 end

121 // Block to control the reads from the output RAM.

122 always_ff @(posedge clk) begin

123 if (reset_rams)begin

124 ram0O_rdaddress <= 0; raml _rdaddress <= 0; ram2 rdaddress <= 0;
ram3_rdaddress <= 0;

125 end

126 if (chipselect && read) begin

127 case (address)

128 7 : readdata <= total_time ;

129 8 : readdata <= ramO_rdaddress;
30 9 : readdata <= raml_rdaddress;
1 10 : readdata <= ram2_rdaddress;
32 11 : readdata <= ram3_rdaddress;
12 : readdata <= ramO_wraddress;

40 Chapter 8. Appendix

134 13 : readdata <= raml_wraddress;

135 14 : readdata <= ram?2_wraddress;

136 15 : readdata <= ram3_wraddress;

.

138 0 : begin

139 if (ram0O_rdaddress <= ramO_wraddress) begin
140 if (read_cycle0) begin

141 ram(QO_rdaddress <= ramO_rdaddress + 1;
142 read_cycle0 <= 0;

143 readdata <= ram0_q;

144 end

145 else begin

146 read_cycle0 <= 1;

147 end

148 end

149 else

150 readdata <= ram0O_q;

151 end

152

153 1 : begin

154 if (raml_rdaddress <= raml_wraddress) begin
155 if (read_cyclel) begin

156 raml_rdaddress <= raml_rdaddress + 1;
157 read_cyclel <= 0;

158 readdata <= raml_q;

159 end

160 else begin
161 read_cyclel <= 1;

162 end

163 end

164 else

165 readdata <= raml_q;
166 end

167

168 2 : begin

169 if (ram2_rdaddress <= ram2_wraddress) begin

170 if (read_cycle2) begin

171 ram2_rdaddress <= ram2_rdaddress + 1;
172 read_cycle2 <= 0;

173 readdata <= ram2_q;

174 end

175 else begin

176 read_cycle2 <= 1;
177 end

178 end

179 else

180 readdata <= ram2_q;

181 end

182

183 3 : begin

184 if (ram3_rdaddress <= ram3_wraddress) begin

185 if (read_cycle3) begin

186
187
188
189
190
191
192
193
194
195
196
197
198
199

200

8.1

File Listings 41

ram3_rdaddress <= ram3_rdaddress + 1;
read_cycle3 <= 0;
readdata <= ram3_q;
end
else begin
read_cycle3 <= 1;

end
end
else
readdata <= ram3_q;
end
default : readdata <= 255;
endcase
end

end

201 endmodule

42

Chapter 8. Appendix

Hardware:oscheduler.sv

//START MODULE_NAME

/1l
/1l
/1l
/1

i

/1l
/1l
/1
/1

Module Name : Old Scheduler

Description : Reads values from RAMS (4 x 4 architecture) and
/1! schedules to prevent collisions.

Limitation : None

Results expected: Schedules without collisions to appropriate RAM’ s
11/

> //END_MODULE NAME

module Scheduler(input logic clk,

input logic [31:0] inputl, input2, input3,

input logic [11:0] input_ram_wr_addl, input_ram_wr_add2,
input_ram_wr_add3 ,

input logic write_enable ,

output logic out_ram_wrl , out_ram_wr2, out_ram_wr3,

output logic [31:0] outputl, output2, output3,

output logic [11:0] input_ram_rd_addl , input_ram_rd_add2,
input_ram_rd_add3 ,

output logic input_ram_rdenl , input_ram_rden2 ,
input_ram_rden3);

logic emptyl, empty2, empty3;
logic[1:0] write_cycle;

initial begin

write_cycle = 0;
outputl = 0; output2 = 0; output3 = 0;
out_ram_wrl = 0; out_ram_wr2 = 0; out_ram_wr3 = 0;
input_ram_rd_addl = 0; input_ram_rd_add2 = 0; input_ram_rd_add3
= 0’
end

function logic set_rd(logic [31:0] data, logic empty);
if (empty)
case(data[1:0])

2°b00 : if (!out_ram_wr2) begin
output2 = data;
out_ram_wr2 = 1;
return 1;

end

else

91

8.1 File Listings

43

return 0;
2°b10 : if (!out_ram_wr2) begin
output2 = data;

out_ram_wr2 = 1;
return 1;

end

else
return 0;

2’b01 : if (!out_ram_wrl) begin
outputl = data;

out_ram_wrl = 1;
return 1;

end

else
return 0;

2°bll : if (!out_ram_wr3) begin
output3 = data;

out_ram_wr3 = 1;
return 1;
end
else
return 0;
endcase
else
return O;
endfunction

always_ff @(posedge clk) begin

input_ram_rdenl = 1; input_ram_rden2 = 1; input_ram_rden3
packets have been written to RAM

// all

if (write_enable)begin

if (write_cycle == 2) begin

write_cycle = 0;

if (input_ram_rd_addl < input_ram_wr_addl)
emptyl = 0;

else
emptyl = 1;

if (input_ram_rd_add2 < input_ram_wr_add2)
empty2 = 0;

else
empty2 = 1;

if (input_ram_rd_add3 < input_ram_wr_add3)
empty3 = 0;

else
empty3 = 1;

emptyl);
empty?2) ;

empty3);

input_ram_rd_addl = input_ram_rd_addl + set_rd (inputl,

input_ram_rd_add2 = input_ram_rd_add2 + set_rd (input2,

input_ram_rd_add3 = input_ram_rd_add3 + set_rd (input3,

44 Chapter 8. Appendix

93 end

94 else begin

95 write_cycle = write_cycle + 1;

96 out_ram_wrl = 0; out_ram_wr2 = 0; out_ram_wr3 = 0;
97 end

08 end

99 end

100 endmodule

)

8.1 File Listings 45

Verilator:vgacounter.cpp

/! Instantiates the VGA_LED.sv and exercises it for 200 input and 200
read // cycles
#include "VVGA LED.h"

3 #include "verilated .h"

18

#include "verilated_vcd_c.h"

#include <stdlib .h>

#include <time.h>

#include <iostream >

// This is required otherwise the module doesn’t get instantiated and

the linker

// throws an error.

vluint64_t main_time = 0; // Current simulation time
// This is a 64—bit integer to reduce wrap over issues and
// allow modulus. You can also use a double, if you wish.
double sc_time_stamp () { // Called by $time in Verilog

return main_time; // converts to double, to match
// what SystemC does

}

int main(int argc, char*x argv)

{
Verilated :: commandArgs (argc, argv);
time_t t;
// init top verilog instance
VVGA_LEDx top = new VVGA_LED() ;
// init trace dump
Verilated :: traceEverOn (true);
VerilatedVcdCx tfp = new VerilatedVedC;
top—>trace (tfp, 99);
tfp —open("vgaled.ved");
// initialize simulation inputs
top —>clk = 1;
top—>write = 0;
top—>reset =0;
top—>read = 0;
int num_packets = 10;
srand ((unsigned) time(&t));
// run simulation for 100 clock periods
for(int 1 = 0; 1 < 300; i++)
{
if (1>=8 && i<8+8xnum_packets) {
top—>write=1;
top—>chipselect = 1;
//top—>address = 1;
if (i%8==0)
top—>address = 1/8%4;
if(i%2 == 0 && 1%8 < 6)
top—>writedata = rand () +1;
else if(i%8 == 6)

top—>writedata 0;

100

46 Chapter 8. Appendix
else if (i>=10+8*num_packets && 1<12+8+num_packets && i1%2==0){
top—>write=1;
top—>chipselect = 1;
top—>address =15;
top—>writedata = 0;
}

else if(i%2 == 0){
top—>write =0;
top—>chipselect = 0;
top—>address =0;
top—>writedata = 0;

}

for(int clk = 0; clk < 2; ++clk)
{
top—>eval () ;
tfp —>dump ((2 * i) + clk);
if (clk==1){
top—>clk =!top—>clk;

top—>v__DOT__buffer__DOT__raml_wraddress;
top—>v__DOT__buffer__DOT__ram2_wraddress;

}
}

1
int ram0_size = top—>v__DOT__buffer__ DOT__ramO_wraddress;
int raml_size =
int ram2_size =
int ram3_size = top—>v__DOT__buffer__DOT__ram3_wraddress;
int j = 0;

for(int 1 = 300; i < 600; i++)

{

if (i < 312){
top—>chipselect

=],
top—>address = 14;

top—>write = 1;
Jelse if(j < ramO_size)
top—>write = 0;

top—>chipselect = 1;

top—>address = 0;
if (1%6 < 4)

else if(j >= ramO_size && j < raml_size + ramO_size) {

top—>read = 1;
clse
top—>read = 0;
}
top—>write = 0;
top—>chipselect = 1;
top—>address = 1;
if (1%6 < 4)
top—>read = 1;

else

116

119

120

121

126

8.1 File Listings

47

top—>read = 0;

}

else if(j >= raml_size + ramO_size && j < raml_size + ram?2_size

+ ramOQ_size) {

top—>write = 0;

top—>chipselect = 1;

top—>address = 2;

if (i%6 < 4)
top —>read

else
top—>read = 0;

L;

}

else if(j >= raml_size + ramO_size + ram2_size && j < raml_size

+ ram?2_size + ram3_size + ramO_size) {
top—>write = 0;
top—>chipselect = 1;
top—>address = 3;
if (1%6 < 4)

top—>read = 1;
else
top—>read = 0;
}else if (i >= 590 && 1<592){
top—>write = 1;

top—>chipselect = 1;
top—>address = 13;
top—>read = 0;
}else {

top—>write = 0;
top—>chipselect = 0;
top—>address = 0;
top—>read = 0;

}

if (1>312 && 1%6==5)
j++;

for(int clk = 0; clk < 2; ++clk)

{
top—>eval () ;
tfp —>dump ((2 * i) + clk);
if (clk==1){
top—>clk =!top—>clk;
}
}

1
tfp —>close () ;

)

3
4
5
6

8

48

Chapter 8. Appendix

Verilator:schedulercounter.cpp
// For easy interfacing with the scheduler.
#include "VScheduler.h"

#include "verilated .h"
#include "verilated_vcd_c.h"

7 int main(int argc, charsx argv)

{

Verilated :: commandArgs(argc, argv);

// init top verilog instance
VScheduler+* top = new VScheduler();

// init trace dump
Verilated :: traceEverOn (true);
VerilatedVcdCx tfp = new VerilatedVedC;
top—>trace (tfp, 99);

tfp —>open("scheduler.ved");

// initialize simulation inputs
top—>clk = 1;
top—>write_enable
top—>reset_rams =

= 1;
0;

// run simulation for 100 clock periods
for(int i = 0; 1 < 24; i++)
{
if (i==8){
top —>input_ram_wr_add [0][0]
top —>input_ram_wr_add [1][1]
top —>input_ram_wr_add [2][2]
top—>input_ram_wr_add [3][3]

1l
[NSIN ST (S I \S)

}

if (top—>input_ram_rd_add [0][0] == 0)
top—>inp [0][0] = 1;

else
top—>inp [0][0] = O;

if (top—>input_ram_rd_add[1][1l] == 0)
top—>inp [L][1] = 2;

else
top—>inp [1][1] = O;

if (top—>input_ram_rd_add[2][2] == 0)
top—>inp [2][2] = 3;

else
top—>inp [2][2] = 03

if (top—>input_ram_rd_add[3][3] == 0)
top—>inp [3][3] = 4;

else

top—>inp [3][3] 0;

8.1 File Listings

49

for(int clk = 0; clk < 2; ++clk)
{
top—>eval () ;
tfp —>dump ((2 * i) + clk);
if (clk==1){
top—>clk =!top—>clk;
}
}
}
for(int j = 0; j < 4; j++){
for(int k = 0; k < 4; k++){
top—>input_ram_rd_add[j][k] =
}
}
top —>input_ram_wr_add [0][0]
top—>input_ram_wr_add [1][1]
top—>input_ram_wr_add [2][2]
top —input_ram_wr_add [3][3]
top—>total_time = O0;

o
o O O O

for(int i = 24; i < 96; i++)
{
if (i==32){
top —>input_ram_wr_add [0][0]
top —input_ram_wr_add [1][0]
top —>input_ram_wr_add [2][0]
top—>input_ram_wr_add [3][0]

[\SIN \S TN (ST)

1

if (top—>input_ram_rd_add[0][0] ==
top—>inp [0][0] = 1;

else
top—>inp [0][0] = O;

if (top—>input_ram_rd_add[1][0] ==
top—>inp [1][0] = 2;

else
top—>inp [1][0] = O;

if (top—>input_ram_rd_add[2][0] ==
top—>inp [2][0] = 3;

else
top—>inp [2][0] = O;

if (top—>input_ram_rd_add[3][0] ==
top—>inp [3][0] = 4;

else
top—>inp [3][0] = O;

for(int clk = 0; clk < 2; ++clk)
{
top—>eval () ;
tfp —>dump ((2 * i) + clk);
if (clk==1){
top—>clk =!top—>clk;

0)

0)

0)

50 Chapter 8. Appendix

103 }

104 }

105 }

106 tfp —>close () ;

107}

1
2
3
4

5

0
1
5

5

1
1

1

1

14
1

1

17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

8.1 File Listings 51

Verilator:ramcounter.cpp

// For easy interfacing with the Scheduler

#include "VRAM.h"

#include "verilated .h"

#include "verilated_vcd_c.h"

vluint64_t main_time = O0; // Current simulation time
// This is a 64—bit integer to reduce wrap over issues and
// allow modulus. You can also use a double, if you wish.
double sc_time_stamp () { // Called by $time in Verilog

return main_time; // converts to double, to match
// what SystemC does

}

int main(int argc, char** argv)

{

Verilated :: commandArgs (argc, argv);

// init top verilog instance
VRAMx top = new VRAM() ;

// init trace dump
Verilated :: traceEverOn (true);
VerilatedVcdCx tfp = new VerilatedVedC;

top—>trace (tfp, 99);
tfp —open("ram.ved");

// initialize simulation inputs

top—>clock = 0;

// run simulation for 100 clock periods

for(int i = 0; 1 < 100; i++)

{

if (i>=13 && 1<15){

top—>data = OxA;
top—>wren = 0x1;
top—>wraddress = 0x1;

else if (i>=15 && i<17){
top—>data = 0xB;
top—>wren = 0x1;

top—>wraddress = 0x2;
}
else {
top—>data = O0;
top—>wren = 0;
}

if (i>=17 && 1<19){
top—>rden = Oxl1
top—>rdaddress

0x1;

52

Chapter 8. Appendix

51
52
53
54
55
56
57
58
59

60

62

66

else if (i>=19 && i<21){
top—>rden = 0x1;
top—>rdaddress = 0x2;

else {
top—>rden = O0;

for(int clk = 0; clk < 2; ++clk){
top—>eval () ;
tfp —>dump ((2 = i) + clk);
if (clk==1){

top—>clock =!top—>clock;

}

}

tfp —>close () ;

)

® 9 o W

9
10
11
12
13
14
15

16

26

8.1 File Listings 53

Verilator:buffercounter.cpp

/! For simulating Buffer, its better to simulate the full suite
#include "VBuffer.h"

#include "verilated .h"

#include "verilated_vcd_c.h"

#include "iostream"

vluint64_t main_time = 0; // Current simulation time
// This is a 64—bit integer to reduce wrap over issues and
// allow modulus. You can also use a double, if you wish.
double sc_time_stamp () { // Called by $time in Verilog
return main_time; // converts to double, to match
// what SystemC does
}
int main(int argc, charsx argv)

{

Verilated :: commandArgs (argc, argv);

// init top verilog instance
VBufferx top = new VBuffer();

// init trace dump
Verilated :: traceEverOn (true);
VerilatedVcdCx tfp = new VerilatedVedC;

top—>trace (tfp, 99);
tfp —open (" buffer.ved");

top—>read_enable = 1;

// initialize simulation inputs

top —>clk = 1;

// run simulation for 100 clock periods
int add = O;

for(int i = 0; 1 < 100; i++){

// Place a dummy data on write bus. You need to write first.
/1l Write to RAM 1

//RAM 0 & RAM 1

if (i>=10 && i<14){

top—>out_ram_wr[0] = 1; //Enable ramenl for 1 clock
cycles
top—>outp[0] = 1; //Put data on the result signal
top—>out_ram_wr[1l] = 1;
top—>outp[1l] = 2;
}
else {
top—>out_ram_wr[0]=0; //Toggle ramenl
top—>outp [0] = 0; //Toggle result 1
}

//RAM 2 & RAM 3
if (i>=14 && i<18){

66

54

Chapter 8. Appendix

top—>out_ram_wr[2] = 1;
top—>outp [2] = 3;
top—>out_ram_wr[3] = 1;
top—>outp [3] = 4;

}

else {
top—>out_ram_wr[2] = O0;
top—>outp[2] = O;

}

/!l Generate read signals

if (1>=20 && 1<36)({
top—>chipselect = 1;
top—>read = 1;
top—>address = add;
if (1%4 == 3)

add = add + 1;

printf ("%i\n", add);

}

else {
top—>chipselect = 0;
top—>address = 0;
top—>read = O0;

}

for(int clk = 0; clk < 2; ++clk)
{

top—>eval () ;

tfp —>dump ((2 * i) + clk);

if (clk==1){

top—>clk = !top—>clk;

}

}

tfp —>close () ;

8.1 File Listings 55

Verilator:Makefile

SwitchON hardware simulation file. Compiles all the modules
individually or

> # can compile them into one top module.

List the includes here

altera_mf.v contains scfifo and altsync modules.
INCLUDES=altera_mf.v

List all the warning flags with the reason to skip them.

WFLAGS= —Wno—INITIALDLY —Wno—lint —Wno—-MULTIDRIVEN —Wno—-UNOPTFLAT —Wno—

COMBDLY

#WFLAGS=

Warning Flags Description (http ://www. veripool.org/projects/verilator/
wiki /

Manual—verilator)

1)—Wno—INITIALDLY:—

Warns that you have a delayed assignment inside of an initial or final

block.If this message is suppressed, Verilator will convert this to a

non—delayed assignment. See also the COMBDLY warning.Ignoring this

warning may make Verilator simulations differ from other simulaors.

Our Observation:

#

Since some of the Altera modules (more than hundreds)did not have

this explicitly set we disabled it, and have not faced any issue as
such .

#

2)—Wno—lint:—

Disable all lint related warning messages, and all style warnings.

This is equivalent to "—Wno-ALWCOMBORDER —Wno—CASEINCOMPLETE

—Wno—CASEOVERLAP —Wno—CASEX —Wno—CASEWITHX —Wno—-CMPCONST —Wno—
ENDLABEL

—Wno—IMPLICIT —Wno—LITENDIAN —Wno—PINCONNECTEMPTY —Wno—PINMISSING

—Wno—-SYNCASYNCNET —Wno—UNDRIVEN —Wno—UNSIGNED —Wno—UNUSED —Wno—WIDTH

plus the list shown for Wno-style .

It is strongly recommended you cleanup your code rather than using
this

option, it is only intended to be use when running test—cases of code

received from third parties.

#

3)—Wno-MULTIDRIVEN: —

Warns that the specified signal comes from multiple always blocks.
This

is often unsupported by synthesis tools, and is considered bad style

v # It will also cause longer runtimes due to reduced optimizations.

Ignoring

this warning will only slow simulations, it will simulate correctly.

#

4)—Wno—UNOPTFLAT: —

41

56 Chapter 8. Appendix

Warns that due to some construct, optimization of the specified
signal
or block is disabled. The construct should be cleaned up to improve

i # runtime .A less obvious case of this is when a module instantiates

wu # two submodules. Inside submodule A, signal I is input and signal O
is

4 # output. Likewise in submodule B, signal O is an input and I is an
output.

6 H# A loop exists and a UNOPT warning will result if AI & AO both come
from

o # and go to combinatorial blocks in both submodules, even if they are

s # unrelated always blocks. This affects performance because Verilator

1 # would have to evaluate each submodule multiple times to stabilize
the

so # signals crossing between the modules.Ignoring this warning will only

s1 # slow simulations , it will simulate correctly.

52 # 5)—Wno—COMBDLY: —

53 # Warns that you have a delayed assignment inside of a combinatorial
block .

se # Using delayed assignments in this way is considered bad form, and
may

ss # lead to the simulator not matching synthesis. If this message is

5

6(

61

62

suppressed , Verilator , like synthesis, will convert this to a

non—delayed assignment, which may result in logic races or other
nasties

.See http ://www. sunburst—design.com/papers/
CummingsSNUG2000SJ_NBA_revl_2. pdf

Ignoring this warning may make Verilator simulations differ from other

simulators.

s TOPMODULE=VGA_LED # Name of the TOP MODULE into which all modules will

be mushed.

Define individual modules below with the appropriate simulators.

7 # Notation to define simulation file is <modulenamecounter.cpp>

TOP level module depends on Fifo.v Scheduler.v Buffer.v megamux.v

70 VGA_LED_SIM=vgacounter.cpp # Define the simulation file you for this

module .
vgaled:
verilator $(WFLAGS) —top—module $(TOPMODULE) —I $(INCLUDES) —cc \
—trace VGA_LED.sv —exe $(VGA_LED_SIM)
make —j —C obj_dir/ —f VVGA_LED.mk VVGA_LED
obj_dir /VVGA_LED

7 # The RAM’s on the output port of the Switch

buffer_SIM=buffercounter.cpp # Define the simulation file you for this
module .

buffer:
verilator —Wno—1lint —top—module Buffer —I $(INCLUDES) —cc \

[

96

97

99

100

101

102

103

104

105

106

107

108

109

114

8.1 File Listings 57

—trace Buffer.sv —exe $(buffer_SIM)$
make —j —C obj_dir/ —f VBuffer.mk VBuffer
obj_dir/VBuffer

s #Compiles the scheduler depends on None. This is the Crossbar switch

scheduler_SIM=schedulercounter.cpp

scheduler:
verilator —Wno—lint —cc —trace Scheduler.sv —exe $(scheduler_SIM)$
make —j —C obj_dir/ —f VScheduler.mk VScheduler
obj_dir/VScheduler

> # Compiles into Altera’s scfifo depends on scfifo.v
3 #fifo_SIM=fifocounter .cpp

#fifo:
#verilator —Wno—INITIALDLY —Wno-lint —Wno-MULTIDRIVEN —top—module
Fifo \

#—cc —trace Fifo.v —exe $(fifo_SIM)
#make —j —C obj_dir/ —f VFifo.mk VFifo
#o0bj_dir/ VFifo

Compiles the Megamuxes
#mux_SIM=muxcounter . cpp
#mux :
#verilator —Wno—lint —cc —trace Ipm_mux.v —top—module Ipm_mux ——exe

\

#$ (mux_SIM) $
#make —j —C obj_dir/ —f VIpm_mux.mk VIpm_mux
#o0bj_dir /Vlpm_mux

#Compiles the scheduler depends on None. This is the Crossbar switch

ram:

verilator $(WFLAGS) —I $(INCLUDES)$ —cc —trace RAM.v —top—module RAM
—eXxe ramcounter.cpp

make —j —C obj_dir/ —f VRAM.mk VRAM

obj_dir /VRAM

; clean :

rm —rf obj_dir
rm —f x.ved

58

Chapter 8. Appendix

¥ X ¥ ¥ x ¥

x/

Software:main.c
Userspace program that communicates with the led_vga device driver
primarily through ioctls
Based on Stephen Edwards’s Code.
Specific Words(see packetgen.h) reserved for RAM/Scheduler control.
Architecuture of the Switch
| Address | | Status |
15 write_enable // Kicks the Scheduler into motion.
14 read_enable // Kicks the output RAMS.

#include <stdio.h>
#include <stdlib .h>
#include <time.h>
#include "vga_led.h"
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string .h>
#include <unistd.h>
#include "packetgen.h"

int vga_led_fd;

int

sent [VGA_LED_DIGITS], received [VGA_LED_DIGITS];

int main ()

{

vga_led_arg_t vla;

int 1i;

time_t t; // Use the system time to seed the pseudo random generator
srand ((unsigned) time(&t));

static const char filename[] = "/dev/vga_led";

printf ("Switch ON Packet Generator started\n");

if ((vga_led_fd = open(filename, ORDWR)) == —1) {
fprintf (stderr , "could not open %s\n", filename);

return —1;
}
for(i=0; i<VGA_LED_DIGITS; i++){
sent[i] = O;
received[i] = O;
}
Iintx 1nput,;
charx packet_info;
// Generate the packet and sends it.
for (i = 0 ; i < NUM_PACKETS; i++) {
packet_info = mkpkt();
input = generate (packet_info);
int sport = i%4;
printf ("Sending packet to port: %u, of length: %u, with seed: %u
\n", packet_info[0], packet_info[2], packet_info[1l]);

8.1 File Listings 59

50 write_segments (vga_led_fd, input, sport, packet_info[2]);

51 sent[packet_info [0]%4]++;

52 }

53 for (i=0; i<VGA_LED_DIGITS; i++){

54 printf ("Packets sent to RAM %i: %i\n", i, sent[i]);

56 printf ("Done Sending Packets, run validator to check!!,terminating\n
R

57 vla.digit = WRITE ENABLE_SCHEDULER; // For starting the Scheduler

58 vla.segments = 0; // No address needed

59 if (ioctl(vga_led_fd, VGA_LED_WRITE_DIGIT, &vla)) {

60 perror ("ioctl (VGA_LED_WRITE_DIGIT) failed");

61 return ;

62 }

63 vla.digit = READ_ENABLE SCHEDULER; // For Read Enabling the
Scheduling

64 vla.segments = 0;

65 if (ioctl(vga_led_fd, VGA_LED_WRITE_DIGIT, &vla)) {

66 perror ("ioctl (VGA_LED_WRITE_DIGIT) failed");

67 return ;

68 }

69 return O;

70 }

60 Chapter 8. Appendix

Software:packetgen.h

*
* packetgen headers:

* Contains various headers defining packet parameters.
*

*

Team SwitchON

¢ * Columbia University
7 %/

s #include <stdint.h>

o #ifndef __ PACKETGEN_H_
0 #define __ PACKETGEN_H_

2 /*Packet parameters x/

4 // Crossbar Architecture

15 /%

16 -1 —l=I-I

17 -2 —l=I-lI

18 =3 —l=I-I

19 1 23

20 *x/

21 // Packet Structure (all length in bytes)
2 [/ |LENGTH | LENGTH | SEED | DPORT |

3 [/ 1 1 1 1

2% // Destination port parameters

»s #define MIN_DPORT 1 // Minimum dst port that must be generated
% #define DPORT_BITS 256 //1 Byte

27 #define NUM_PACKETS 150 // Total Packets to be sent.

s #define SEED_BITS 256 // Keep the seed of 1 byte

0 #define WRITE_ENABLE SCHEDULER 15 // Write Enable the scheduler.
30 #define READ_ENABLE SCHEDULER 14 // Read Enable the Ouput Rams.
31 #define NUM RAMS 4 // Define the number of RAMS.

» #define TIME_PER_CYCLE 20%107—-9

13 charx mkpkt() ;

s #endif

55 void write_segments (int vga_led_fd, intx input, int sport, int len);
% int % generate () ;

8.1 File Listings

packetgen.c

*

Userspace program that generates packets with random contents
Headers are defined in packetgen.h

x Define the function prototypes in the packetgen.h headers

*/

*

#include <stdlib .h>
#include "packetgen.h"
#include "vga_led.h"
#include <stdio.h>

// Mkpkt returns a char pointer to the input. Generates an array with
// randonly generated packets.
charx mkpkt() {

charx input = (char %) malloc(4);

input[0] = rand ()%DPORT_BITS; // LSB 8 bits destination port.

input[1l] = rand ()%SEED_BITS; // Seed for the data.
input[2] = rand () %60+4; // Length of the packet.
input[3] = 0; // Length of packet MSB

return input;

}

/!l Writes the packet to vla.segment.
void write_segments(int vga_led_fd, intx packet, int sport, int len)

{

vga_led_arg_t vla;

int i;
vla.digit = sport; // Make source port on which to send.
for (i =0 ; i < len; i++) {

vla.segments = packet[i];

if (ioctl(vga_led_fd, VGA_LED_WRITE DIGIT, &vla)) |{
perror ("ioctl (VGA_LED_WRITE_DIGIT) failed");

return ;
}
}
}
// Pushes the 32 bits and then generates a packet which is exactly 32
bytes .
intx generate (char packet_info[4]){
int i = 0;
int len = (int) packet_info[2];
intx input = (int %) malloc(lenx4);

input[0] = (packet_info[3]<<24)I|(packet_info[2]<<16)I
(packet_info[l]<<8)I(packet_info[0]);
srand ((unsigned) (packet_info[1]));
for (i=1; i < len—1; i++){
input[i] = rand() + 1;
!
input[len —1] = O0;
return input;

62 Chapter 8. Appendix

Software:validator.c

e
> x Switch ON validator , after main has completed sending the packets,
this * connects to the vga_led device and extracts all the

information about t * he current status of the RAM’s,based on which

it extracts the packet fr % om each RAM. Now it also locally seeds

itself with the encoded packet’s *x seed and then matches the

information one by one till EOP((End of packe * t), at which stage

it resets it’s seed and waits for another packet.
*
4 %/
s #include <stdio.h>
¢ #include <stdlib .h>
7 #include <time.h>
s #include "vga_led.h"
o #include <sys/ioctl.h>
0 #include <sys/types.h>
1 #include <sys/stat.h>
2 #include <fcntl.h>
i3 #include <string.h>
4 #include <unistd.h>
s #include <math.h>
16 #include "packetgen.h"
7 int vga_led_fd;
s int received [VGA_LED_DIGITS], packets[VGA_LED_DIGITS];

20 int main ()

|

2 vga_led_arg_t vla;

23 int i,j,k,total_packets = O,transferred_data=0;

24 static const char filename[] = "/dev/vga_led";

25 printf (" Userspace Validation of sent data \n");

26 if ((vga_led_fd = open(filename, ORDWR)) == —1) {
27 fprintf (stderr, "could not open %s\n", filename);
28 return —1;

29 }

30 for(i=0; i<VGA_LED_DIGITS; i++){

31 received[i] = O0;

3 packets[i] = 0;

3 }

34 // Output Ram’s count

35 for(i=0; i<VGA_LED_DIGITS; i++){

36 vla.digit = 12+1i;

37 if (ioctl(vga_led_fd, VGA_LED_READ DIGIT, &vla)) {
38 perror ("ioctl (VGA_LED_READ_DIGIT) failed");
39 return ;

40 }

41 received[i] = vla.segments;

) printf ("RAM %i (32 Bits Transferred ,includes all 4) : %i\n",

received[i]);
43 transferred_data = transferred_data + received[i];

i s

8.1 File Listings 63

44
}

45 printf (" Transferred Data (Bytes) : %i\n",transferred_datax4);

46 for(i=0; i<VGA_LED_DIGITS; i++){

47 vla.digit = 8+i;

48 if (ioctl(vga_led_fd, VGA_LED_READ_DIGIT, &vla)) {

49 perror ("ioctl (VGA_LED_READ_DIGIT) failed");

50 return ;

51 }

52 }

53 for(i = 0; i<VGA_LED_DIGITS; i++){

54 // Start extracting values from the Output Rams

55 printf (" Validating from RAM: %i\n", 1i);

56 vla.digit = 1i;

57 for(j=0; j<received[i]; j++){

58 // Extract the values from the rams.

59 if (ioctl(vga_led_fd, VGA_LED_READ_DIGIT, &vla)) {

60 perror ("ioctl (VGA_LED_READ_DIGIT) failed");

61 return ;

62 }

63 if (vla.segments == 0){

64 printf ("Received 0");

65 continue ;

66 }

67 unsigned int seedMask = 65280; // Extract the middle bits

68 int length = vla.segments;

69 int seed = length;

70 int dport = seed;

71 length = length >>16;

72 seed = ((seed & seedMask)>>8); // Extracts the seed from
packet

73 dport = dport%4;

74 if (dport!=i){

75 printf("Invalid RAM location and dport from packet
header\n");

76 exit(1);

77 }

78 srand (seed) ;

79 /! Do some error handling.

80 for(k=1; k<length; k++){

81 if (ioctl(vga_led_fd, VGA_LED_READ_DIGIT, &vla)) {

82 perror ("ioctl (VGA_LED_READ_DIGIT) failed");

83 return ;

84 }

85 if (k<length —1){

86 int a = rand() + 1;

87 if(vla.segments != a){

88 printf ("Packet value does not match: %i, %i\n",
a, vla.segments);

89 exit(1l);

90 }

91 } else if(k == length—1 && vla.segments != 0){

9 printf ("Length of packet reached but O not received

96

114

115

116

64

Chapter 8. Appendix

An");
exit(1);
}
J++s
}

packets [1]++;
total_packets++; // Increment the total packet sent counter.
}

}
printf (" All RAM’s have passed Validation!! \n");

printf ("Total Packets Sent : %i\n", total_packets);
for(i = 0; 1 < 4; i++){
printf ("Output RAM: %i Packet Count: %i\n", i, packets[i]);
}
vla.digit = 7;
if (ioctl(vga_led_fd, VGA_LED_READ_DIGIT, &vla)) {
perror ("ioctl (VGA_LED_READ_DIGIT) failed");

return ;
}
int num_clock_cycles = 0; // Number of clock cycles it took in total
num_clock_cycles = vla.segments;

printf ("Number of cycles required for transfer: %i\n",
num_clock_cycles);

float var = 20E—9; // Assuming FPGA runs on 50 MHZ clock.
printf ("Speed through the Switch is:%f (in Mbits/s) \n" ,(
transferred_datax4x8)/(var*x1024%x1024xnum_clock_cycles));
return 0;

8.1 File Listings

65

Software:vga_led.h

1 #ifndef _VGA_LED_H
> #define _VGA_LED_H

4+ #include <linux/ioctl.h>
o« #define VGA_LED_DIGITS 4

s typedef struct ({

9 unsigned char digit;

o unsigned int segments; /x
} vga_led_arg_t;

#define VGA_LED MAGIC ’q’

LSB is segment a, MSB is decimal point =x/

s /* ioctls and their arguments x/
6 #define VGA_LED_WRITE_DIGIT _IOW (VGA_LED_MAGIC, 1,

7 #define VGA_LED_READ_DIGIT

19 #endif

_IOWR (VGA_LED_MAGIC, 2,

vga_led_arg_t x)
vga_led_arg_t x)

-

~ W

® 9 o W

26

45
46
47
48

49

66 Chapter 8. Appendix

Software:vga_led.c

/*

* Device driver for the VGA LED Emulator

*

x* A Platform device implemented using the misc subsystem
*

* Stephen A. Edwards

* Columbia University

*

* References:

* Linux source: Documentation/driver —model/platform. txt
* drivers/misc/arm—charlcd .c

* http ://www. linuxforu.com/tag/linux —device—drivers/

* http :// free—electrons .com/docs/

*

* "make" to build

* insmod vga_led.ko

*

* Check code style with

* checkpatch.pl —file —no—tree vga_led.c

*/

> #include <linux/module.h>

#include <linux/init.h>
#include <linux/errno.h>

s #include <linux/version.h>

#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/miscdevice.h>
#include <linux/slab.h>

#include <linux/io.h>

#include <linux/of.h>

#include <linux/of_address.h>
#include <linux/fs.h>

#include <linux/uaccess.h>
#include "vga_led.h"

#define DRIVER NAME "vga led"

[*
* Information about our device
*/
struct vga_led_dev {
struct resource res; /« Resource: our registers x/
void __iomem xvirtbase; /* Where registers can be accessed in memory
*/
u32 segments [VGA_LED_DIGITS | ;
} dev;

/%
* Write segments of a single digit

59
60
61
62

63

66

69

90
91
92
93
94
95
96

97

8

99

100

8.1 File Listings

67

* Assumes digit is in range and the device information has been set
*/

static void write_digit(unsigned int digit, u32 segments)

{
iowrite32 (segments, dev.virtbase + 4xdigit);
dev.segments[digit] = segments;

1

/ *

* Handle ioctl () calls from userspace:

* Read or write the segments on single digits.
* Note extensive error checking of arguments
*/

static long vga_led_ioctl(struct file *f, unsigned int cmd, unsigned

}

long arg)

vga_led_arg_t vla;
switch (cmd) {
case VGA_LED_WRITE_DIGIT:
if (copy_from_user(&vla, (vga_led_arg_t x) arg,
sizeof (vga_led_arg_t)))
return —EACCES;
/xif (vla.digit > 8)x/
/xreturn —EINVAL; %/
write_digit(vla.digit, vla.segments);
break ;

case VGA_LED_READ DIGIT:
if (copy_from_user(&vla, (vga_led_arg_t =) arg,
sizeof (vga_led_arg_t)))
return —EACCES;
if (vla.digit > 15)
return —EINVAL;
int a;
a = ioread32(dev.virtbase + 4xvla.digit);
vla.segments = a;
/" vla.segments = dev.segments[vla.digit];
if (copy_to_user((vga_led_arg_t *) arg, &vla,
sizeof (vga_led_arg_t)))
return —EACCES;
break ;

default :
return —EINVAL;

}

return O;

/+ The operations our device knows how to do x/
static const struct file_operations vga_led_fops = {

.owner = THIS_MODULE,

up

68 Chapter 8. Appendix

101 .unlocked_ioctl = vga_led_ioctl,
02 };
103
104 /* Information about our device for the "misc" framework — like a char
dev x/
s static struct miscdevice vga_led_misc_device = {
106 .minor = MISC_DYNAMIC_MINOR,
107 .name = DRIVER_NAME,
108 .fops = &vga_led_fops,
100 };
110
/%

1
> * Initialization code: get resources (registers) and display
3 % a welcome message

14 %/

s static int __init vga_led_probe(struct platform_device xpdev)
e {

n7 // static unsigned char welcome_message [VGA_LED_DIGITS] = {
ns 1/ 0x3E, 0x7D, 0x77, 0x08, 0x38, 0x79, Ox5E, 0x00};

119 int i, ret;

120 static unsigned char welcome_message[4] = {0, 0, 0, 0};

122 /* Register ourselves as a misc device: creates /dev/vga_led =/
123 ret = misc_register(&vga_led_misc_device);

125 /+ Get the address of our registers from the device tree =x/

126 ret = of_address_to_resource (pdev—>dev.of_node, 0, &dev.res);
127 if (ret) {

128 ret = —ENOENT;

129 goto out_deregister;

130 }

131

132 /+ Make sure we can use these registers x/

133 if (request_mem_region(dev.res.start, resource_size(&dev.res),
134 DRIVER_NAME) == NULL) {

135 ret = —EBUSY;

136 goto out_deregister;

137 }

138

139 /+* Arrange access to our registers x/

140 dev.virtbase = of_iomap (pdev—>dev.of_node, 0);
141 if (dev.virtbase == NULL) ¢{

142 ret = —ENOMEM;

143 goto out_release_mem_region;

144 }

145

146 /+ Display a welcome message x/

147 for (i = 0; i < VGA_LED_DIGITS; i++)

s [/ write_digit(i, welcome_message[i]);

149 return O;
150

51 out_release_mem_region:

8.1 File Listings

152 release_mem_region(dev.res.start , resource_size(&dev.res));
153 out_deregister::

154 misc_deregister(&vga_led_misc_device);

155 return ret;

156 }

iss /* Clean—up code: release resources x/
5o static int vga_led_remove(struct platform_device xpdev)

160 {

161 iounmap (dev. virtbase) ;

162 release_mem_region(dev.res.start , resource_size(&dev.res));
163 misc_deregister(&vga_led_misc_device);

164 return 0;

165 }

167 /% Which "compatible" string(s) to search for in the Device Tree x/
s #ifdef CONFIG_OF

o static const struct of_device_id vga_led_of_match[] = {
170 { .compatible = "altr ,vga_led" },

o {1},

172}

173 MODULE_DEVICE_TABLE(of, vga_led_of_match);

174 #endif

76 /* Information for registering ourselves as a "platform" driver x/

177 static struct platform_driver vga_led_driver = {

178 .driver = {

179 .name = DRIVER_NAME,

180 .owner = THIS_MODULE,

181 .of _match_table = of_match_ptr(vga_led_of_match),
182 },

183 .remove = __exit_p(vga_led_remove),

184 };

iss /* Called when the module is loaded: set things up x/

157 static int __init vga_led_init(void)

188 {

189 pr_info (DRIVER_ NAME ": init\n");

190 return platform_driver_probe(&vga_led_driver, vga_led_probe);
o1}

192

193 /* Called when the module is unloaded: release resources x/

w4 static void __exit vga_led_exit(void)

195 {

196 platform_driver_unregister(&vga_led_driver);
197 pr_info (DRIVER_ NAME ": exit\n");

198}

199

20 module_init(vga_led_init);

200 module_exit(vga_led_exit);

202

203 MODULE_LICENSE("GPL") ;

70 Chapter 8. Appendix

204+ MODULE_AUTHOR(" Stephen A. Edwards, Columbia University");
205 MODULE_DESCRIPTION ("VGA 7—segment LED Emulator");

=

46

8.1 File Listings 71

Software:Makefile

Use gcc for compilation
CC = gcc

Include extra directories
INCLUDES =

Compilation Options:
—g for debugging —Wall enables all warnings
CFLAGS = —g —Wall $(INCLUDES)

Linking Oprions:
—g for debugging info

s LDFLAGS = —g

#List of Libraries which need to be linked in LDLIBS
LDLIBS =

Specify Targets in a recursive way.
We rely on make’s implicit rules:
$(CC) $(LDFLGAGS) <all —dependent —.o—files > $(LDLIBS)

*# 3

Main is the main target that is compiled, it contains references to
other
functions.

The philosophy is pretty simple main depends on everything so include
all the

x.0 files in main,now other files might have internal dependencies

like packet_gen

depends on common hence it is compiled together.

#

.PHONY:

main: main.o packetgen.o common.o

main.o: main.c packetgen.h
packet_gen.o: packetgen.c packetgen.h common.h
common. o :common. ¢ common. h
Target based compilation

packetgen:
$(CC) $(CFLAGS) packetgen.c packetgen.h common.c common.h

; .PHONY: clean

clean:
rm —f *.0 a.out main core packet_gen common executable
.PHONY: all

72 Chapter 8. Appendix

s all: clean packet_gen

	Introduction
	Aim
	Overview

	Design Architecture
	System Architecture
	Hardware Section
	Avalon Bus

	Software Section

	Simulation
	Introduction
	Simulation Test Bench
	Component Simulation
	RAM Simulation
	Conclusion

	Hardware Design
	Interfacing with Software
	Memory - RAM

	Network Fabric
	Crossbar Switch Model

	Scheduling Algorithm
	Single Input Queue Scheduler
	Performance Comparison
	The whole suite

	Software
	Implementation details
	Packet Generator
	Validator

	Evaluation
	FPGA Switch Performance

	Conclusion
	Lessons Learnt
	Future Work

	Appendix
	File Listings

