CSEE 4840
Embedded System Design
Jumpers

Bernardo de Almeida Abreu bd2440
Henrique Pizzol Grando hp2409
Lucas Ikenaga Barros li2176
Tomas Mantelato tm2779

Professor Stephen Edwards
Overview and Objectives

- The objective of this project was to develop a game controlled by an accelerometer, in a FPGA board.
- The game is composed by two players that need to jump over platforms in order to stay alive.
- If a player reaches the bottom of the screen he loses the game.
- The accelerometer will define the horizontal velocity in which the player moves around.
- The number of lives that a character has is pictured by the number of icons representing himself at the top of the screen.
Design Diagram

Hardware - Controller

- Accelerometer
- Teensy

USB

Software

Avalon Bus

Memory

Video controller

Hardware - Video and Audio

VGA display
Hardware Peripherals

Accelerometer:

- ADXL335 (3 axis accelerometer)
- Only one of the axis controls the horizontal displacement of the character
- Connected to the Teensy 2.0 through analog pins
Hardware Peripherals

Teensy 2.0 (ATmega32u4 USB development board)

- Reads data from accelerometer and sends to the FPGA via USB
- Arduino compatible.

Why we used it? The teensy is a plug and play device that shows up as keyboard when connected. We could use the driver from Lab 2.
Hardware

Sprites

- The sprites created for this game are divided in icon sprites and the gameplay sprites.
- The icon sprites have a size of 16x16 whereas all the other sprites have a size of 32x32.
- There is a color palette of 19 colors.
- The sprites can be mirrored through the hardware.
Hardware

Background

- The background has a size of 320x240 and the hardware increases its size by a factor of 2
- The color palette of the background has 4 colors
Hardware

The instructions were used in the following ways:

<table>
<thead>
<tr>
<th>1 0001 010 001 0</th>
<th>0001010000 0001010000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>Shape</td>
</tr>
<tr>
<td>0 001 0010 010 0</td>
<td>0001010010 0010110000</td>
</tr>
<tr>
<td>00001010 00110011</td>
<td>x position</td>
</tr>
<tr>
<td>Layer</td>
<td>Unused</td>
</tr>
<tr>
<td>00001010 00110011</td>
<td>x position</td>
</tr>
<tr>
<td>Red</td>
<td>Green</td>
</tr>
<tr>
<td>Blue</td>
<td>unused choice</td>
</tr>
<tr>
<td>life 2</td>
<td>life 1</td>
</tr>
</tbody>
</table>
Software

The software can be categorized in three different parts:

1. Main game logic
 - Implemented by a user C program
 - Randomly generated grounds
 - Collision Handling
 - Gravity Simulation
 - Input received from user through an accelerometer to move the characters
Software

2. Communication with our hardware
 - ioctl calls
 - send sprites and their position

3. Communication with peripherals
 - Uses USB library
 - Accelerometer treated as keyboard
 - Treats information received from peripheral