CSEE 4840 Embedded System Project Report

Video Game: Real Boxing
Jiagi Guo jg3639

Contents:

1.

O N O ~w

INEFOTUCTION ...ttt b bbbttt b et e bt sbeneeeeneas 3
VGA Image Display MOGUIEccoveeieieeceeeese e te sttt se e 4
Y01 41 3 €T =T o]] 0SSR 4
2.2 TechNiQUES 10 SAVE IMIBIMOIYeeiiieeeeeieiesie ettt ettt see et eaesne s 7
SSM2603 Audio CodeC MOUIE..........coerieiiiieeeeeee e e 9
HArdware INTEITACE.o.iiiee ettt be e 10
[T [Tl @o] 1 1 o] 10 o 1| AP USRS 13
DEVICE DIIVEF UNIT.....ciiiiiiiiiieeieteeee ettt sttt sttt st b e st 14
GAME DBIMO ..ottt r e s r e r e sbe e e e nesresreenennens 14
Summary and FUTUFe DIFECTIONccueviiieeeieriese ettt ste et ste e naeneas 16
8.1 SUMMAIY ..eiieeteeteete ettt ettt ettt ettt b e e b e s st e s et e s et e s st e s s tesntesatesntesatesatesntesntesntesnee 16
8.2 FULUIE DIFECTION ...ttt sttt st et be b b 16
A] =T T 13 SO S 16
0.1 SOTIWAIE ...ttt sttt et b bbbt bt e e e st b s b et et ene et nee e e e ne 16
L0 0 o0)] o X S 16
TN T 1S o] =) 1o T Lo X oS 29
9.1.3 USDKEYDOAIT.N ...ttt ne e nae e 30
TR 0 Y o - T [T X oS 30
TR 0 Y o - T [T X S 35
0. 1.5 MAKETIIE .ttt 36
0.2 HAITUWATE ...ttt ettt b ettt b e bt e b e st eb e st et et e bt st s b e e e e ne 36
0.2 1 VGA _LED .SV ..ttt ettt sttt ee 36
9.2.2 VGA LED_EMUIBLOI.SV ...uviieieceeeieiesie ettt sae et ae s 38
0.2.2 AUIO_BFTECES.SV ..ttt ne e e e 61
ST Y AN T [o T oo o LT oo S 64

oI AN (o [o TN o] ¢ 11O 66

1. Introduction

For this project, the goal is to implement a boxing game via FPGA Cyclone
board and several peripherals such as VGA monitor, SSM2603 audio codec and USB
keyboard. In this game, players could join in a boxing fight versus a computer
opponent. For controlling part, players could use LEFT and RIGHT buttons to set up
corresponding attack on the opponent, and SPACE or DOWN hbuttons to defend
opponent’s attack. Besides, both player and Al opponent have a life bar to denote their
current health status, once a player runs out of all health, the game ending condition is
met and his opponent wins the game. | also designed a simple user interface for the
starting screen. In addition to image display, this game also contains three sound
effects for attack, defend and dodge. Figure 1 shows the screen when the game is
counting for start.

Figure 1. Project Demo.

In general, this game combines both hardware and software design, and would be
a decent practice for what | have learned in the class. The software section contains
device driver unit and logic control unit. The device driver unit provides an interface
between hardware (audio codec, keyboard and VGA monitor) data ports and logic
control unit. And the logic control unit provides most controlling judgments while the
game proceeds. These controlling judgments include game starting judgment, hit or
miss judgment, successful defense judgment and game ending judgment.

The hardware section mainly contains the design of VGA image display module
and SSM2603 audio codec module. As mention above, the device driver unit provides
interface for logic control unit and hardware, in more detail, logic control unit could
send specific data to hardware through device drivers. After the peripherals receive
data from their drivers, they decode the data and display the corresponding images or
music. The overall flowchart can be shown as follows:

SOFTWARE DESIGN
Logic contral :-: Device Driver
Module Module

v

USB keyboard

I

Input

Avalon Bus

' v

VGA_LED <:: ROM2 :> Audio Generator

Controller Controller

ROMnR

v v

Q/HARDWARE DESIGN Music Disnlav/

Figure 2. Project Flowchart.

2. VGA Image Display Module

| started working on my project from the design of VGA image display module.
This part receives data from VGA_LED device driver, decode the data into display
commands and print the screen according to these commands. The screen contains
640x480 pixels, and each pixel has 3 channels for RGB information. While displaying,
the hardware scrolls down every pixel on the screen in a zigzag order. And we need to
decide what RGB value should be for each pixel.

2.1 Sprite Graphics

The game contains several images to display, like player’s left and right fists, the
opponent, background and life bars. However, these images often get overlapped with
each other while displaying. Therefore, we will need several different layers that each

contains one of those images. And what would be finally shown on the screen is
determined by the priority of these layers.

The technique to display the images in several different layers and use layer’s
priority to determine what is shown on the screen is called the Sprite Graphics. At
each pixel, the VGA controller first finds out how many sprites have values at this
point, and each sprite reads in data from its ROM. Then through a priority controller,
VGA module finally decides which sprite to display at this pixel.

In this project, there are 14 sprites and 11 of them need a ROM to store the image
information. For those sprites which do not need extra image information, the
following two conditions should be met:

(1) The sprite shape could be described in a simple equation, such as a line, a circle or a
rectangle.
(2) The sprite should be monochrome.

And in this program, only the life bar and life bar border would meet these conditions.
Thus they do not consume extra memory on the Sockit board. However, in some other
cases, only the shape information of the sprite is needed, and we could play some
tricks to save memory in ROM setting up of these sprites. This will be explored in
more detail in the following section.

For those sprites which require shape or color information, we will need a ROM
to store the image information for the sprite. In order to build a ROM, we first use
Matlab to convert a RGB image into a mif file (the Matlab code to convert RGB
image into mif file is added to appendix), and this file would be used to initialize the
corresponding ROM. And in QUARTUS I, we could use the MegeWizard function to
generate a ROM, and we only need to specify the width of data-output port, the
number of memory units and the initializing file.

Some of the sprite images are shown below:

Figure 4. Sprites for attacking fist and hit effect

As we can see from these examples, the shapes of most sprites are not restricted
in a rectangle. However, when converting RGB image into a mif file, the whole image
including the margin is encoded into the file. In order to get rid of the margin part, |
add a signal NBLANK to each of these sprites to show the pixel value read from the
corresponding ROM is not white, and use this signal in the priority controller to help
decide which sprite to display.

The following table contains the sprites I used in the game:

Sprite Amount Pixel Size Total ROM
Fist_atk 1 170*125 63750
Fist_def 1 170*125 63750
Opponent 1 300*200 180000
Num 1 1 96*65 18720
Num 2 1 96*65 18720
Num 3 1 96*65 18720
Start_title 1 25*230 17250

Game _title 1 65*350 68250
Spark 1 120*150 54000
Opponent_fist 1 115*115 39675
Background_slice |1 125*1 375
Total 11 181070 543210

And the priority of the sprites is shown as follows:

Game Title

U

Opp_fist_large

vV

Life Bar & Life Bar Border

v

Start Title Right or Left Attack Opponent
v i 0

CD Num Right or Left Defend Background
0 v

CD Num2 Opp_fist_small
v 0

CD Num2 Right or Left Spark

Figure 5. Sprite Priority
2.2 Techniques to Save Memory

The pins on the Sockit board is truly limited, during this project, | run into the
trouble due to insufficient memory several times while compiling. One reason is that
most sprites | used are relatively larger than sprites used in other project. Also I will
need to add audio data into the game. Therefore, some methods to help me save
memory are necessary.

The first trick | played while implementing sprite graphics is using the
symmetricity of the image. There are many images in this game that need to be
displayed in a symmetric counterpart, like the attacking fist, the defending fist and the
spark. If we just use another ROM for a symmetric counterpart of the image, the
memory required is doubled. So the idea here is using one ROM to show both left and
right fists or sparks. The way to implement this is: when we compute the address for
the ROM, we use both its coordinate in the screen and in its single image. Thus, we
only need to use the number of columns to subtract the number of the current pixel

column index instead of using the number of the current pixel column index directly.

Figure 6 shows some symmetricity examples.
J ! ! i
4 .

Figure 6. Symmetricity Examples

The second technique is using image interpolation to dilate a small image. This is
used in the case of opponent’s attacking fist (see in Figure 7.). | just stored the
115*115 pixel image in the ROM, and use it for both 115*115 and 230*230 sprite
display. And this is implemented by something like down sampling. When we
compute the coordinate for the pixel, | use the whole vcount and hcount[10:1] to
denote the position in the screen. Here, | omit the last bit of both hcount and vcount,
in this way, two pixels at both x and y directions are taken as one. And the resulting
image is dilated by a factor of 4. One drawback of this method is that the image could
only be dilated by a factor that is the power of 4 (in a single direction, the dilation

factor is 2).

Figure 7. Samples Using Dilation

The third way is reduce color information redundancy. As mentioned in the last
section, some sprites does not require a ROM if they meet those two conditions.
However, for some sprites that only need the shape information, we could also do
something to help save memory. Like in the case of sprites of the counting-down
number, I merely want to display them in a single color. Therefore, instead of 24 bits
ROM (8 bits for each RGB channel) data width, | just use one bit for each pixel to
record the shape information in the ROM. This is also the case for the game_title and
the starting_title.

Real Boxing

Boxing

Figure 8. Images Require Only Shape Information
3. SSM2603 Audio Codec Module

In this project, | used analog devices chip SSM2603 audio CODEC provided by
the Cyclone V Sockit board for Audio encoder and decoder. SSM2603 supports
sampling rates ranging from 8 kHz to 96 kHz. According to Nyquist sampling theory
and human’s acceptable audio frequency range, I choose the sampling rate to be 44.1
kHz.

U9

LR MCLK/XTI
AUD_BCLK

< BCLK Mic In @ 6
AT ‘
AUD_DACD. PEDAT
A ACLRCK
ZA! | | E D;]-)_/AS i PBLRC
™ AUD_ADCDAT Line In ﬁ‘]s

Yy vyv v

« RECDAT
AUD_ADCLRCK
3 c’ AUD_MUTE
e AUD_SCLK | o Line Oul (@) 7
- » SCLK
AUD_SDAT
« = » SDIN

Figure 9. SSM2603 Audio Codec

Before the Audio Codec can start capturing or playing audio, it has to be
configured with options such as the sampling rate and sample width (how many bits
each sample is). The protocol the audio codec uses for configuration is the
Inter-Integrated Circuit (I°C) protocol. This is a two-wire protocol originally designed
by Phillips Semiconductor in the 1980s to connect peripherals to the CPU in TV sets.
Nowadays it’s used to connect low-speed peripherals in all sorts of devices. You can
find detailed information about the I1°C protocol at Embedded Systems Academy, from
which I took all the timing diagrams you will see below.

Now we have a way to send data through the configuration interface, but what
data do we send? For that we must consult the datasheet. The first thing we need to
know is what the slave address of the audio codec is. Page 17 of the datasheet states if

http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus.html

the CSB pin is set to 0, the address selected is 0011010; if 1, the address is 0011011.
You can figure out what CSB is set to on the SoCKit by looking at the schematic. It’s
actually a bit ambiguous in the schematic, which shows that CSB is connected to both
Vg4q and ground through resistors. However, the schematic helpfully notes that the
default 1°C address is 0x34 / 0x35. Note that this is an 8-bit word. The difference in
the LSB refers to the read/write bit. Since we are only writing, the address we use is
0x34. This means CSB must be set to 0.

Now we need to figure out what the 16-bit data words are. The audio codec
organizes its configuration variables into 19 9-bit registers. The first seven bits of the
data transmission are the register address, and the last nine bits are the register
contents. In particular, register 8 controls the sampling rate. We want a 44.1 kHz rate
for both the ADC and the DAC. According to table 30 in the datasheet, this means we
should set CLKODIV2 and CLKDIV2 to 0, SR to 1000, the base oversampling rate to
0, and USB mode select to 0.

As for audio clock, the first clock we have to worry about generating is the
master clock MCLK. According to table 30, the frequency of this clock should be
11.2896 MHz. This frequency cannot be generated by simply dividing the master
clock (there is no integer number N such that 50 / N is close enough to 11.2896).
Fortunately, the Cyclone V contains specialty circuits called Phase-Locked Loops
(PLLs) which can generate very precise clock signals. You can add a PLL to your
design using Megawizard. The PLL megafunction is under “PLL” -> “Altera PLL
v13.1”. In the main page of the wizard, change the reference clock frequency to 50
MHz and uncheck the “Enable locked output port” option. In the “Output Clocks”
section, change “Number of Clocks” to 2. We will use the PLL to generate a 11.2896
MHz clock for the audio codec and a 50 MHz main clock. Enter these frequencies in
for “Desired Frequency”. For the 50 MHz clock, you will also need to change the
actual frequency to the one right below 50 MHz (you can’t generate a clock faster
than 50 MHz from a 50 MHz reference). At the beginning of the game, the software
extracts the background music sample previously stored in the SDRAM and loads it
into the circular queue in the Audio Controller Module, which will continuously send
signals to the SSM2603 Audio CODEC to play the sounds until the player exit the
game. During the boxing game, when logic control module decides the player’s and
Al boxer’s states, it sends audio controlling signals as well as image controlling
signals. It will instruct the DRAM to load the corresponding special sound effect into
FIFO, and instruct SSM2603 to play the special sound.

4. Hardware Interface

This part of the project deals with how controlling data are transformed and
decoded in software and hardware. In general, there are 14 different controlling
signals for different sprites or audios. Each time the logic control unit sends a 32-bits
controlling data to the hardware, the 32-bits writedata is divided into 14 parts and

FPGA would change displaying images and audios according to the corresponding
controlling signals. Below is a table denoting the detail of writedata components.

Bits in writedata Annotation Description

0-2 Opp Position of opponent
3-4 Spark States of spark

5-6 My _state States of player

7 isLeft Left or right attack

8-10 Attack_state Position of attacking fist
11-12 My iddle Position of idle fist

13 Def_state Position of defending fist
14-15 Opp_fist State of opponent’s fist
16-17 Audio_state Which audio is chosen
18-21 My _health_state My life bar

22-25 Opp_health_state Opponent’s life bar

26 Game _title State of game title

27 Start_title State of start title

28-29 Num_state Counting down num

Besides, I also list the detailed decoding table for each of these control signals.

Opp_state
Binary Decimal Decoding
000 0 Original position
001 1 -5
010 2 5
011 3 -40
100 4 40
101 5 -80
110 6 80
111 7 Dead

Spark_state

Binary Decimal Decoding
0x Oorl None
10 2 Left
11 3 Right

My _state
Binary Decimal Decoding
00 0 Attack
01 1 Defend
10 2 Idle
11 3 Hurt

ifLeft

Binary Decimal Decoding
0 0 Right
1 1 Left
atk_state
Binary Decimal Decoding
000 0 Coordinate 0
001 1 Coordinate 1
010 2 Coordinate 2
011 3 Coordinate 3
100 4 Coordinate 4
101 5 Coordinate 5
110 6 Coordinate 6
111 7 Coordinate 7
Defend_state
Binary Decimal Decoding
0 0 Up
1 1 Down
Opp_fist_state
Binary Decimal Decoding
0x lorQ None
10 2 Small
11 3 Large
Audio_state
Binary Decimal Decoding
00 0 Hurt
01 1 Dodge
10 2 Defend
11 3 None
Game & Start_title
Binary Decimal Decoding
0 0 Hidden
1 1 Shown
Num_state
Binary Decimal Decoding
00 0 None
01 1 Cd numl

10 2 Cd num2

11 3 Cd num3

As for my & opp_health_state, the 4-bits signal denotes exactly the number of
health remained for the player/opponent, thus it is not listed in detail.

5. Logic Control Unit

For Logic Control Module, | intend to run the main part of the program in a while
loop. In each iteration, control module first checks the keyboard input and decides the
current player’s state through the keyboard input. Using the function RAN(), Logic
Control Module would decide what Al boxer will act according to player’s current
state. Both player and Al boxer would have four states: attack, idle, defend and hurt.
Once the states of player and Al are decided, Logic Control Module would generate a
32 bits controlling data and send this data to hardware interface through Device
Driver Module.

Al boxer would do idle, attack or defend according to player’s idle or defend
states, defend or hurt according to player’s attack state. If Al boxer chooses to attack,
control unit would set player’s state to hurt. And when one side’s state becomes
defend or hurt and the other side’s state is attack, the display condition is met and
control unit would send data to device driver, after that both player’s and Al boxer’s
states are reset to idle.

This is shown in the following logic control flowchart.

KevBoard Input

{

Player's Current State

E = |5 -

& bits

controlling

I attack | |defend

Opponent's State

] —=

| attack |

data

—

i

| Device Driver Module

Figure 10. Logic Control Unit

6. Device Driver Unit

In this project, users could interact with the Al opponent with a USB-keyboard.
The driver of the USB-keyboard could be implemented through libusb if you could
successfully set up the Linux environment. But in this project, 1 would like to
introduce another method to read in and decode USB-keyboard input.

Once a USB-keyboard is connected to the Linux, the system automatically
creates an input file denoted as ‘event0’ at /dev/input. We could use the ‘cat’
command to check the file’s content while we press some buttons on the
USB-keyboard. This simple experiment shows that we could get the USB-keyboard
input by directly reading this ‘eventO’ file.

In linux, we just need to include ‘linux/input.h’ for our head files, and then we
could call the function ‘open(“/dev/input/event0”, O _RDONLY)’ and
‘read(usbkeyboard_fd, &usbkeyboard buff, sizeof(struct input_event))’ to store the
USB-keyboard input into a variable ‘usbkeyboard buff’.

And there are some problems concerning decoding the stored input data. In the
function, every time a button is pressed, the function generates six input data. So we
need a counter to distinguish one input and six inputs. More detailed code is listed in
the appendix.

7. Game Demo
In this section | list several screen shots while the game program is running.

Real Boxing

Press Enter to Start!

Figure 11. Game Start Screen

Figure 12. Counting Down to Start Screen

Figure 13. Opponent Attack Screen

8. Summary and Future Direction
8.1 Summary

The most difficult part for me is still the game logic design. Unlike hardware
design like sprite graphics or SSM2603 audio codec, | could hardly find any reference
online or from previous projects for the software design. Besides, | got a lot of trouble
while dealing with USB-keyboard driver. The function ‘read()’ from ‘linux/input.h’
returns to me a quite strange format of input data. | spent much time trying to
decoding the keyboard input.

Still, 1 am kind of proud that | was able to finish the task on time by myself. |
always want to do something stupid but impressive in Columbia. That would be worth
memorizing after | graduate.

8.2 Future Direction

(1) One thing I really want to implement in this project is using an acceleration sensor
as controller. We could attach such sensors on our fist. When we punch or defend, the
sensor captures the speed and direction of our fist and uses these data to determine
attacking damage.

(2) Another intriguing direction of this project is to design a more intelligent computer
opponent. Currently the state machine contains only three states for the Al boxer. We
could design more complicated model and give it more reflection than just dodge and
attack.

9. Appendix

9.1 Software

9.1.1 boxing.c

tinclude “usbkeyboard.h”
e .
Hinclude “vga led.h
m

include <stdlib. h>

include <string.h>

i
Hinclude <unistd. h)

include <pthread.h

include <stdio. h>

include <sys/ioctl.h

#define ATK_INTV 25000 //25000

#define BLINK INTV 200000

#define DDG_PROB
#define ATK_PROB 3
#define REF_INTV 3

unsigned int other state;

int myhealth state=15;
int opphealth state = 15;

int game on=0;

function

*ignore)

this part is called

Six

ins 6

same

s from the same s at all,

or no

void init vga led()

static const char

audio state,
myhealth sta

ealth st

unsigned title state,

unsigned start_state,

unsigned num_s

<<

_state title state <<

10 | start state 11 | num state << 12;

return (other state);

ioctl write function

void write game state (unsigned int opp state

unsigned int my state
unsigned int isleft
unsigned int atk state,
unsigned int idle state
unsigned int def state,
unsigned int opp fist

unsigned int other state

’S.my state =

's. atk_state = atk state;
’s. idle state = idle state;
's. def state = def state;
's. opp_fist = opp fist;

's. other state = other state;

perror (“ioct]l (VGA LED WRITE GAME ¢

void left atk hit()

int cntl, cnt2;

audio myhealth opphealth title start cdnum

def uM)fj;\'t
for (cnt1=0; cnt1<7;
write game state(2, 0, , 1, cntl, 0,

myhealth state, opphealth state, 0,

opphealth state —= 1;

0,

write game state(0, gen other state(3,

tate idlestate defstate oppfist

myhealth opphealth title

isleft atk idle def oppfist

start cdnum

write game state(

opphealth state, 0,0,0));

centl,

usleep (ATK _INTV);

write game state(6,

ate (1, myhealth state, opphealth state, 0,0,0)):

write game state(4, , , , , 0, gen other state(3
myhealth state, opphealth state, 0,0,0)):
usleep (ATK INTV) ;

write game state(4,

0, gen other state(3

void right atk ddg()

int cntl, cnt2;

audio myhealth

centl,

0,

centl,

0,

cnt2, O, 0, gen other state(3

for (ent2=3; cnt2>=0; cnt2—)

write game state(1, 0, 0, gen other state(3,

cnt2,

void dfd opphit ()

write game state(0,0,1,0,0,0, 1,0, gen other state(3, myhealth state,
opphealth state, 0,0,0));

usleep (DFD_INTV) ;

write game state(0,0,1,0,0,0, 1,2, gen other state (3,

myhealth state,
opphealth state, 0,0,0)) ;
usleep (DFD_INTV) ;

write game state(0,0,1,0,0,0,0, 3, gen other state(2, myhealth state,

opphealth state, 0,0,0)) ;

write ga S gen other state (3, myhealth state,

opphealth state, 0,0, 0

void dfd oppidle ()

write game state(1,0,1,0,0,0, 1,0, gen other state(3, myhealth state,
opphealth state, 0,0,0)) ;

usleep (DFD_INTV) ;

write game state(0,0,1,0,0,0, 1,0, gen other state(3, myhealth state,
opphealth state, 0,0,0));

usleep (DFD INTV) ;

write game state(2,0,1,0,0,0, 1,0, gen other state(3, myhealth state,
opphealth state, 0,0,0));

usleep (DFD INTV) ;

write game state(0,0,1,0,0,0, 1,0, gen other state(3, myhealth state,

opphealth state, 0,0,0));

void my idlel()

write game state(0,0,2,0,0,0,0,0, gen other state (3, myhealth state,
opphealth state, 0,0,0)) ;
usleep (IDL INTV) ;

write game state(0,0,2,0,0,1,0,0, gen other state(3, myhealth state,
opphealth state, 0,0,0)) ;
usleep (IDL INTV) ;

write game state(0,0,2,0,0,0,0,0, gen other state(3, myhealth state,

opphealth state, 0,0,0)) ;

void my idle2()

write_game state (0,0, 2,0,0,0,0,0, gen_other state (3, myhealth state,
opphealth state, 0,0,0)) ;

usleep (IDL_INTV) ;

write game state(0,0,2,0,0,2,0,0, gen_other state (3, myhealth state,
opphealth state, 0,0,0)) ;

usleep (IDL_INTV) ;

write game state (0,0, 2,0,0,0,0,0, gen_other state (3, myhealth state,

opphealth state, 0,0,0)) ;

void player down ()

write game state(0,0,2,0,0,0,0,0, gen other state(3, myhealth state,
opphealth_state, 0,0,0)) :

usleep (BLINK_INTV) ;

write game state(0,0,3,0,0,0,0,0, gen other state(3, myhealth state,
opphealth state, 0,0,0)) :

usleep (BLINK_INTV) ;

write game state (0,0, 2, gen other state (3, myhealth state,
opphealth state, 0,0,0));

usleep (BLINK INTV) :

write game state (0,0, 3, gen other state (3, myhealth state,
opphealth state, 0,0,0)) ;

usleep (BLINK INTV) :

write game state (0,0, 2, gen other state (3, myhealth state,
opphealth state, 0,0,0));

BLINK_INTV) ;

~state (0,0, 3, gen other state (3, myhealth state,
opphealth state, 0,0,0));

usleep (BLINK INTV) ;

void Al down ()

write game state(0,0,2,0,0,0,0,0, gen other state(3, myhealth state,
opphealth state, 0,0,0)) ;

usleep (BLINK INTV) ;

write game state(7,0,2,0,0,0,0,0, gen other state (3, myhealth state

opphealth state, 0,0,0)) ;

usleep (BLINK INTV) ;

write game state(0,0,2,0,0,0,0,0, gen other state (3, myhealth state
opphealth state, 0,0,0)) ;

usleep (BLINK INTV) ;

write game state(7,0,2,0,0,0,0,0, gen other state (3, myhealth state
opphealth state, 0,0,0)) ;

usleep (BLINK INTV) ;

write game state(0,0,2,0,0,0,0,0, gen other state (3, myhealth state
opphealth state, 0,0,0)) ;

usleep (BLINK INTV) ;

write game state(7,0,2,0,0,0,0,0, gen other state(3, myhealth state,
opphealth state, 0,0,0)) ;

usleep (BLINK_INTV) ;

void countdown ()

write game state(7,0,0,0,0,0,0,0, gen other state(3, myhealth state,

opphealth_state, 0,0,3)) ;

usleep (1000000) ;

write game state(7,0,0,0,0,0,0,0, gen other state(3, myhealth state,
opphealth_state, 0,0,2)) ;

usleep (1000000) ;

write game state(7,0,0,0,0,0,0,0, gen other state(3, myhealth state,

opphealth state, 0,0,1));

usleep (1000000) ;

functions

0,0,0,0,0, gen other state(3, myhealth state

opphealth state, 1,1,0)) ;

keyboard thread start

pthread create (&keyb _thread, NULL, keyboard thread f, NULL);

if(insign>temp insign)//chec
printf ("\nkey value: %d\n\n”, key value) :
temp insign+=6;

if(key value == 105)

(RAND_MAX+1.0)) ;

(RAND_MAX+1.0)) ;

if(jud>DDG PROB)
atk_)

> 1f (key value == 108 key value == 57)

int jud = I+(int) (10. O*krand () / (RAND MAX+1.0)) ;

game on = 0;

key value = 2;

temp insign = insign;

and () / (RAND_MAX+1.0)) ;

usleep (0. 5%REF INTV) ;
write game state(0,0,2,0,0,0,0,2, gen other state (3, myhealth state,
opphealth state, 0,0,0)) ;
usleep (REF INTV) ;

if(insign>temp insign && (key value == 108 || key value == 57))

write game state(0,0,1,0,0,0, 1,3, gen other state(2, myhealth state,

opphealth state, 0,0,0)) ;

usleep (DFD_IN

myhealth state —=

temp insign must > updated before the end of one

0 || opphealth state ==0)

i f (myhealth state

pl
AT down() ;

game on = 0;

—down () ;

if(key value==1)

game on = 0;

while (game on ==1)

usleep (350000) ;

while(1)

*program ends

printf ("program ended\n”) ;

pthread cancel (keyboard thread) ;

pthread join(keyboard thread, NULL) :

return 1;

J

9.1.2 usbkeyboard.c

”

ttinclude “usbkeyboard. |
struct input_event usbkeyboard buff;
int usbkeyboard fd;

int usbkeyboard read nu;

void init_keyboard()

= open(”/dev/input/event0”, O _RDONLY) ;

if (usbkeyboard buff. type==1 & usbkeyboard buff.value==1)

[ﬂ"] ntf (”Tf,'l'u) . ”‘M code (]

. type, usbkeyboard buff. code, usbkeyboard buff. value)

*temp = usbkeyboard buff. code;

%d\n”, *temp) ;

9.1.3 usbkeyboard.h

#ifndef USBKEYBOARD I
H#define USBKEYBOARD I

Hinclude <sys/types.
#include <sys/stat.h>
Hinclude

H#include <linux/input.h

void usbkeyboard() ;

Hendif]

9.1.4vga_led.c

< A Platform device implemented usi

¢ source: Documentation/driver—model/platform. txt
drivers/misc/ar
linuxforu. com/tag/linux—device—drivers

free—e I ectrons. com/docs

" to builc

< checkpatch. pl —file —no—tree

<{linux/module. h
<{linux
{linux/errno. h
<{linux/version. h>
<{linux/kernel.}
<{linux
<{linux
<{linux
<{linux
<{linux
<linux

Hinclude <linux

Hinclude <linux

Hinclude

struct resource res; /* Resource:

can be accessed in memory

iowrite8 (segments, de

* Handle ioctl() calls from userspace:

cmd, unsigned long arg)

static long vga led ioctl(struct file *f, unsigned int

vga led arg t vla;
circle center cc;

game state gs;

if (copy_from user (&vla, (vga led arg t *) arg

sizeof (vga_led arg t)))
return —EACCES;
if (vla.digit > 8)
return —EINVAL;

write digit (vla. it, vla. segments) :

‘eturn —EACCES;
if (vla.digit > 8)
return —EINVAL;
vla. segments = dev. segments[vla.digit];
if (copy_to_user((vga led arg t arg, &vla
sizeof led arg t)))

return —EACCES;

ircle center *) arg, sizeof(circle center)))

iowrite32 ((cc. x cc. y<<3 cc. z<<5), dev. virtbase) ;

generate

ritedatal[9:0]

(game state *) sizeof (game state)))

arg,

-

unsigned int test = gs. opp_state | gs. spark << 3 | gs.my state << 5 | gs.isleft

gs. idle state << 11 | gs.def state << 13 | gs.opp fist << 14

return —EINVAL;

return O;

The operations our ce k s how to do *
static const struct file operations vga led fops
. owner = THIS MODULE,

.unlocked ioctl = vga led ioctl,

framework — like a char dev *

DRIVER NAME,

&vga led fops,

get resources

static int init vga led probe(struct platform device *pdev)

5 a misc device:

ret = of address to resource (pdev->dev. of node, 0, &dev.res);
if (ret) |

ret = —ENOENT;

goto out deregister;

ret = -EBUSY;

goto out deregister;

dev. of node, 0):

out release mem region:

release mem r on(dev. res. start, resource size(&dev.res));

1 led _remove (struct platform device *pdev)

const struct

a “platform” driver *

{

.owner = THIS MODULE,

.of match table = of match ptr(vga led of match),

.remove = _ exit p(vga led remove),

* Called when the module is loaded: set things up *

static int __init vga led init (void)

pr_info (DRIVER NAME ”: init\n”);

return platform driver probe(&vga led driver, vga led probe);

¥ Called when the module is unloaded: release resources *

static void exit vga led exit(void)

platform driver unregister (&vga led driver):

pr_info (DRIVER_ NAME ”: exit\n”):

module init(vga led init);

module exit (vga led exit);

MODULE LICENSE (“GPL”) ;
MODULE_AUTHOR (“Stephen A. Edwards, Columbia University”);
MODULE DESCRIPTION (“VGA 7-segment LED Emulator”) ;

9.1.4vga_led.h

VGA LED DIGITS - 1 #*

unsigned char segments; /* LSB is segment a, MSB is decimal point #*

typedef struct {

» of the ball

the ball

of

y coordinate

opp_state;
spark;
my_ste
isleft:
atk state;
idle state;
def state;
t opp fist;
t other state; other state contains audio states, my&opp states

} game state;

tdefine VGA_LED_MAGIC ¢

and their arguments *
VGA_LED WRITE DIGIT _TOW(VGA_LED MAGIC, 1, vga led arg t *
#define VGA_LED READ DIGIT _TOWR(VGA LED_MAGIC, 2, vga led arg t *
fdefine VGA_LED WRITE _CENTER _TOW(VGA LED_MAGIC, 3, vga led arg t *
VGA_LED_WRITE GAME_STATE _TOW(VGA_LED MAGIC, 4, vga led arg t *)

Hendif]

9.1.5 Makefile

compile from fpga sw file
hello : boxing. o usbkeyboard. o

cc —Wall —-o boxing boxing. o usbkeyboard.o —pthread

hello.o : boxing. ¢ usbkeyboard. h

usbkeyboard. o : usbkeyboard. ¢ usbkeyboard. h

9.2 Hardware

9.2.1 VGA_LED.sv

/

lapped peripheral for the VGA LED Emulator

* Stephen A. Edwards

* Columbia Universityj

module VGA_LED (input logic
input logic
input logic [31:0] writedata
input logic write
input chipselect,

input logic [2:0] address,

output logic [7:0] VGA_R, VGA G,
A BLANK n,

logic [2:0] opp state;
logic [1:0] spark state;
[1:0] my state;
logic isleft;
logic [2:0] atk state;
logic [1:0] idle state;
logic def state;

[1:0] opp fist state;

[3:0] myhealth state;

health state;

title state;

start state;

[1:0] num state;

VGA_LED Emulator led emulator (. c1k50(clk), .=*);

always ff @(posedge clk)

opp_state <= 3 blll;

spark_state <= 2’ b00;

my_state <= 2’ bll;

atk_state <= 3 blll;

idle state <= 2’ b00;

def state <= 0;

opp_fist_state <= 2’ b00;

myhealth state <= 4 bl111;

opphealth state <= 4’ bl1111;

title state <= 1;

start state <= 1;
num_state <= 2’ b00;

else if (chipselect && write)

begin

opp_state <= writedatal[2:0];

spark state <= writedatal[4:3];

my state <= writedatal[6:5];

isleft <= writedatal7];

atk state <= writedatall0:8];

idle state <= writedatall2:11];

def state <= writedatall3];

opp_fist state <= writedatal[l5:14];

myhealth state <= writedatal[21:18];

opphealth state <= writedatal[25:22];
title state <= writedatal[26];

start state <= writedatal[27];

num_state <= writedatal[29:28

endmodul ¢

9.2.2VGA_LED_Emulator.sv

x Seven—segment LED emulator

VGA _LED Emulator (

clkb0, reset,

[23:0] atk left pos,
logic [23:0] atk right pos,

logic [2:0] opp_state,
logic [1:0] spark_state,

[1:0] my_state,
input logic [2:0] atk state,
input logic [1:0] idle state,
input logic def state,

input logic [1:0] opp fist state,

input [3:0] myhealth state,
input [3:0] opphealth state,

input logic title state,

input logic start state,

input logic [1:0] num state,

[7:0] VGA_R, VG
output logic VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK n, VGA_SYNC_n);

50 MHz clock: one pixel every other cycle

* || VGA_HS

parameter HACTIVE
HFRONT_PORCH
HSYNC
HBACK_PORCH
HTOTAL HACTIVE + HFRONT_PORCH + HSYNC + HBACK_ PORCH;

parameter VACTIVE 10’ d 480,
VFRONT PORCH
VSYNC 10°d 2,
VBACK PORCH
VTOTAL VACTIVE + VFRONT PORCH + VSYNC + VBACK PORCH;

hcount; // Horizontal counter

// Heount[10:1] indicates pixel column

logic endOfLine;

always ff @(posedge clk50 or posedge reset)

if (reset) hcount
else if (endOfLine) hcount

hcount <= hcount + 11°d 1;

assign endOfLine = hcount == HTOTAL - 1;
// Vertical counter
logic

if (reset)

else if (endOfLine)

if (endOfField) veount
veount <= vcount + 10°d 1:

assign endOfField = vcount == VTOTAL - 1;
// Horizontal sync: from 0x520 to 0x5DF (0x57F)
// 101 0010 0000 to 101 1101 1111

assign VGA HS = ! ((hcount[10:8] == 3’b101) & !(hcount[7:5] == 3’ blll));
assign VGA VS = ! (vcount[9:1] == (VACTIVE + VFRONT PORCH) / 2);

ign VGA SYNC n = 1; // For adding sync to video signals; not used for VGA

// Horizontal active: 0 to 1279 Vertical active: 0 to 479
// 101 0000 0000 1280 01 1110 0000 480
// 110 0011 1111 1599 10 0000 1100 524

VGA BLANK n = !(hcount[10] & (hcount[9] | hcount[8])) &

// /’/’//////////////////,/,/// ART HERE//////,//,/,’/’,/l/‘/ //// /’////////////

ekekttekkekokolokok /

//left or right attack——1bitg|

logic isleft temp;

//attack position states——3bits

temp <= op

my_state_temp <= my_state;
isleft temp <= isleft;
atk state temp <= atk state;
idle state temp <= idle state;
def state temp <= def state;
opp fist state temp <= opp fist state;
myhealth state temp <= myhealth state;
opphealth state temp <= opphealth state;
start state temp <= start state;
title state temp <= title state;
num state temp <= num state;
else
begin|

opp_state temp <= opp state temp;

spark state temp <= spark state temp;

my state temp <= my state temp;
isleft temp <= isleft temp;

atk state temp <= atk state temp;
idle state temp <= idle state temp;
def state temp <= def state temp;

opp_fist state temp <= opp fist state temp;

myhealth state temp <= myhealth state temp;

opphealth state temp <= opphealth state temp;

start state temp <= start state temp;
title state temp <= title state temp;

num state temp <= num state temp;

skokskskskokokskskskskoskskskskskskskskokskskskskoksksksksk sk sksksksksk sk sksk sk sk sksk sk sksksksksksksksksksksk sk sksk sk sk sk sk sksk ok

#ROM initializationkskkksskskkiokgiokikgokiokkgiokokokk /

logic [6:0] addr background;

bg slice bg slice(.address (addr kground), .clock(clk50), .q(data background)) ;

//attack&idle fist

logic [23:0] data atk;

.clock(c1k50), .q(data_atk)):

logic [23:0] data def;
logic [14:0] addr def;
fist_def fist_def(.address(addr_def), .clock(c1k50),

.q(data def));

//opponent

logic [23:0] data opp;
logic [15:0] addr

nent opponent (. address (addr opp), .clock(clk50), .q(data opp));

opp fist opp fist(.address(addr opp fist), .clock(clk50), .q(data opp fist));

//game title

logic data title;

logic [14:0] addr title;

title title(. address(addr _title), .clock(clkb0), .q(data title));

//start label

logic data start;
logic [12:0] addr start;

start start(.address(addr_start), .clock(clk50), .q(data start));

//count down number 1-3
logic data numl;
logic [12:0] addr numl;

numl numl (. address (addr_numl), .clock(clk50), .q(data numl));

logic data numZ;

logic [12:0] addr num2;

num?2 num? (. address (addr_num?2), .clock(clk50), .qg(data num2));

.clock (c1k50), .q(data num3));

I sto sl sl ste sl ste sl ste sle stesle ste sl st sle sl sl sle sle sle ste sle sle sle ste sle sle sle st of 1o sl ste sle sl sle sle sle ste sle sl sle sl sle sle sle sle sle sl sle s!

/Fdsksskkdokok koo okl ok ok ko

logic numl on;

logic num27on;

logic numl nblank;

on numl nblank

ic numZ2 nblank;

assign num2 nblank =

! (data_num2==0) ;

! (data_num3==0) ;

if(num state temp == 2

else if (num stat

e temp ==

"b01 & hcount[10:1]>=288 & hcount[10:1]<353

2°b10 & hcount[10:1]>=2

-288) + (vcount—

2’b11 & hcount[10:1]>=288 & hcount[10:1]<353 &

& vcount»>

8 & hcount[10:1]<353 &

num2 on <= 0;
1,

num3_on <=

add m3 <= (hcount[10:1]-288) + (vcount—200)*65;

addr num2 <= 0;

addr numl <= 0;

begin|

num2 on <= 0;

addr num2 <= 0;

addr num3 <= 0;

//start label and game title
logic start on;

logic title on;

title on <= 1;

title on <= 0;

addr title <= 0;

(start state temp & hcount[10:1]>=265 & hcount[10:1]<495 & vcount>=265

i
& vcount<290)

start on <= 1;

addr_start <= (hcount[10:1]-265) + (vcount—265)*230;

if ((hcount[10:1]>=0 & hcount[10:1]<=301 & vcount==30) | (hcount[10:1]>=0 &
hcount[10:1]<=301 & vcount==51)
(hcount [10:1] 8 & hcount[10:1]<=639 & vcount==30) | (hcount[10:1]>=338
& hcount[10:1]<=639 & vcount==51) |
(hcount[10: 01 & vcount>30 & vcount<51) | (hcount[10:1]==338 &
vcount>30 & veount<51))

border on <= 1;

border on <= 0;

I
|

logic myhealth on;

logic opphealth on;

always comb|

begin

& hcount[10:1]>=(639-20%opphealth state temp) & vcount>30 &

bg up on <= 0;
bg mid on <= 1;

bg btm on <= 0;

addr background <= (vcount-220) ;

bg up on <= 0;

bg mid on <= 0;
bg btm on <= 1;
addr background

end

end

//opponent

== 24’ d16777215) ;

else if (opp_state temp == 3’ b001 & hcount[10:1]>=215 & hcount[10:1]<415 &

225) + (vcount—180)%*200: :

else if (opp state temp == 3’ b011 & hcount[10:1]>=180 & hcount[10:1]<380 &

else if (opp state temp ==3"b110 & hcount[10:1]>=300 & hcount[10:1]<500 & vcount>=180

-300) + (vcount—180)*200; ;

(€]
nda

addr _opp <= 0;

!

assign spark nblank = ! (data_spark == 24’ d16777215) ;

119 - (hcount[10:1]-245) + (vcount—180)*120;

//opponent fist

logic opp fist nblank;

assign opp fist nblank = !(data opp fist==24"d16777215) ;

logic opp fist on;

& vecount<475

begin|

if(my state temp == 2’ b00)//attack

ft temp)//right fist attack
if(atk state temp == 3’ b000 & hcount[10:1]>=378 & hcount[10:1]<503 &
vcount>=310 & vcount<480)
addr def <= 0;
left atk on <= 0;
right atk on <= 1;

-378) + (vcount — 310)*125;

else if(atk state temp == 3’ b001 & hcount[10:1]>=366 &

addr def <= 0;

left atk on <= 0;
right atk on <= 1;
addr_atk <= (hcount[10:1]) + (vcount - 300)*125;

else if(atk : e temp == 3’ b010 & hcount[10:1]>=354 &
hcount[10:1]<479 & vcount

addr def <= 0;

left atk on <= 0;

4) + (vcount — 290)*125;

= 3'b011 & hcount[10:1]>=342 &

addr def <= 0;

& hcount[10:1]>=330 &

~ . -:_ 4 e
begin
def on <= 0;

addr def <= 0;
left atk on <= 0;

330) + (vcount — 270)%125;

begin|
def on <=

8) + (vcount — 260)%*125;

3’b110 & hcount[10:1]>=306 &

addr def <= 0;

left atk on <= 0;
right atk on <= 1;
addr_atk <= (hcount[10:1]-306) + (vcount — 250)%125;

else if(atk state temp == 3’blll & hcount[10:1]>=294 &
hcount [10:1]1<419 & vcount>=240 & vcount<410)

< on <= 0;

hcount[10:1]-294) + (vcount — 240)*125;

else if (hcount[10:1]>=125 & hcount[10:1]<250 & vcount>=320 & vcount<490)

addr def <= 0;

ount[10:1]-125)) + (vcount — 320)*125;

begin|

addr def <= 0;
left atk on <= 0;

right atk on <=

addr_atk <= 0;

else //left fist attack

if (atk state_temp == 3’ b000 & hcount[10:1]>=137 & hcount[10:1]<262 &
vcount>=310 & vcount<480)

addr def <= 0;

left atk on <= 1;
right atk on <= 0;
addr atk <= 124 - (hcount[10:1]-137) + (vcount — 310)*125;

if(atk state temp == 3’ b001 & hcount[10:1]>=149 &

C 00 & vcount<470)
addr def <= 0;
left atk on <= 1;
right atk on <= 0;
addr_atk <= 124 - (hcount[10:1]-149) + (vcount — 300)*125;

k state temp == 3’ b010 & hcount[10:1]>=161 &
hcount[10:1]<286 & vcount>=290 & vcount<460)

addridoi <=0;

dr atk <= 124 - (hcount[10:1]-161) + (vcount — 290)%*125;

= 3'b011 & hcount[10:1]>=173 &

) . 490 /C O
begin
def on <= 0;

. state temp == 3’ b100 & hcount[10:1]>=185 &

hcount[10:1]<310 & vcount>=270 & vcount<440)

addr def <= 0;

left atk on <= 1;
right atk on <= 0;
addr_atk <= 124 - (hcount[10:1]-185) + (vcount — 270)*125;

3’b101 & hcount[10:1]>=197 &

begin|
def on <= 0;

addr def <= 0;

left atk on <= 1;
right atk on <= 0;
addr_atk <= 124 - (hcount[10:1]-197) + (vcount — 260)*125;

3’b110 & hcount[10:1]>=209 &

addr def <= 0;

left atk on <= 1;
right atk on <= 0;
addr_atk <= 124 - (hcount[10:1]-209) + (vcount — 250)%*125;

else if(atk state temp == 3’blll & hcount[10:1]>=221 &
hcount[10:1]<346 & vcount>=240 & vcount<410)

addridoi <=0;
k <= 124 - (hcount[10:1]-221) + (vcount — 240)*125;

else if (hcount[10:1]>=390 & hcount[10:1]<515 & vcount>=320 & vcount<490)

begin|
def on <=

addr def <= 0;
left atk on <= 0;

right atk on <= 0;

addr_atk <= 0;

def on <= 1;
addr_def <= (124-(hcount[10:1]-190)) + (vcount-310)*125;
left atk on <= 0;

right atk on <= 0;
addr _atk <= 0;

else if (hcount[10:1]>=325 & hcount[10:1]<450 & vcount>=310 & vcount<480)

) + (vcount—310)*125;

addr def <= 0;
left atk on <= 0;
right atk on <= 0;
addr atk <= 0;
if (hcount[10:1]1>=190 & hcount[10:1]<315 & vcount>=320 & vcount<490)

begin

addr_def <= (124-(hcount[10:1]-190)) + (vcount-320)*125;

left atk on <= 0;

right atk on <= 0;

else if(hcount[10:11>=325 & hcount[10:1]<450 & vcount>=320 & vcount<490)
addr _def <= (hcount[10:1]-325) + (vcount-320)*125;
right atk on <= 0;

addr def <=0

left atk on <= 0;

right atk on <= 0;

addr _atk <= 0;
I

else if (my 1te temp == 2’ b10)//idle

& hcount[10:1]<515 & veount>=320 & vcount<490)

begin|

ight

) + (vcount — 320)*125:

else if (hcount[10:1]>=125 & hcount[10:1]1<250 & vcount>=320 & vcount<490)

def on <= 0;

addr def <= 0;

left atk on <= 1;

right atk on <= 0;
k <= (124-(hcount[10:1]-125)) + (vcount — 320)*125;

addr _def <= 0;

left atk on <= 0;

right atk on <= 0;

addr _atk <= 0;

else if(idle state temp == 2’ b01)

if (hcount[10:1]1>=385 & hcount[10:1]1<510 & vcount>=320 & vcount<490)
addr def <= 0;
left atk on <= 0;

right atk on <= 1;

addr_atk <= (hcount[10:1]-385) + (vcount — 320)*125;

else if (hcount[10:1]>=120 & hcount[10:1]<245 & vcount>=320 & vcount<490)

addridoi <=0;

hcount[10:1]-120)) + (vcount — 320)*125;

right atk on <= 0;

else if(idle state temp == 2’ bl0)

(hcount[10:1]1>=395 & hcount[10:1]1<520 & vcount>=320 & vcount<490)
addr def <= 0;
left atk on <= 0;

right atk on <= 1;

_atk <= (hcount[10:1]-395) + (vcount — 320)*125;

else if (hcount[10:1]>=130 & hcount[10:1]<255 & vcount>=320 & vcount<490)

I
addr def <= 0;
left atk on <= 1;
right atk on <= 0;
addr_atk <= (124-(hcount[10:1]-130)) + (vcount — 320)*125;

addr def <=0

def on <= 0;
left atk on <

—+

“atk o

addr atk <=

I
left atk on <= 0;
right atk on <= 0;

addr atk <= 0;
end

else //hurt

begin|
def on <= 0;
addr def <= 0;
left atk on <= 0;

right atk on <= 0;

addr atk <= 0;

skekskskskkskskskekokesksk skksiskeskekoksksksiokekskskeskeiokesksiokokokeskskokeskskskekok

= data_start * 24’ d16777215;

= data_title * 24’ d16777215;

= data_numl * 24’ d8496056;

¢ 24” d8496056;

24’ d8496056 ;

else if(my state temp == 2’ bll & opp _fist on & opp fist nblank)

{VGA R, VGA G, VGA B} = data opp fist;

else if((left atk on | right atk on) & atk nblank)
{VGA R, VGA G, VGA B} = data atk;

else if(def on & def nblank)

{VGA_R, VGA_G, VGA_B} = data_def;

else if(opp fist on & opp fist nblank)

{VGA R, VGA G, VGA B} = data opp fist;

else if(spark on & spark nblank)

{VGA R, VGA G, VGA B} = data spark;

else if (opp_on & opp_nblank)

{VGA_R, VGA_G, VGA B} = data_opp;

else if(border on & (!title state temp))

_R, VGA_G, VGA_B} = 24’ do;

else if (myhealth on & (!title state temp))

A R, VGA_G, VGA_B} = {8 hff, 8 h0, 8 h0};

else if (opphealth on & (!title state temp))
{VGA_R, VGA_G, VGA B} = {8 h0,8 h0, 8 hff};

else if(bg up_on& (!title state temp))

{VGA_R, VGA_G, VGA_B} = 24’ d16777215;

else if(bg mid on& (!title state temp))

{VGA R, VGA G, VGA B} = data background;

else if(bg btm on& (!title state temp))
{VGA R, VGA G, VGA B} = 24’ d8496056;

{VGA_R, VGA_G, VGA_B)} 24’ d16777215; ;

HkickisooiiicekeR ookl

module // VGA_LED Emulator

cna

9.2.3 Audio_effects.sv

//Original audio codec code taken from

//Howard Mao’ s FPGA blog

//zhehaomao. com/blog/ 4/01/15/sockit=8. html

//MOdified as needed

/% audio effects

Reads the audio 1 from the ROM blocks and sends them to the

audio codec interface

module audio_effects (

input sample end, //sample ends

input sample req, //request new sample

input [15:0] M_hrt, //sword sound ROM datal
// output [14:0] addr bell, //ROM addresses

[1:0] control, //Control from avalon bus

input [2:0] ctrl

hrough the sound ROM data for different sc
[13:0] index ddg = 14’ dO;
[12:0] index dfd = 13°d0;

[15:0] index _sw = 15’ d0;

//reg [15:0] countl = 15 d0;

//reg [15:0] count2

assign audio output =

gn index to ROM addresses

always @(posedge clk) begin

addr hrt <= index hrt;

<{= index ddg;

addr ddg
addr dfd <= index dfd;

addr who <= index who;

addr sw <= index sw;

//Keep playing background (city) sound if control is off]

//Play sword sound if control is ON

always @(posedge clk)

begin|

if (control == 2’b00)
dat <= M hrt;
if (index_hrt == 14’ d9514)
index_hrt <= 14’ dO;

endmodul ¢

9.2.4 Audio_codec.sv

inal audio codec code taken from|

hga/2014/01/15/sockit—8. html

//Audio codec interface
module audio codec (
input clk, //audio clock
input reset,
output [1:0] sample end, //end of sample
output [1:0] sample req, //request new sample

input [15:0] audio output, //audio output sent to audio codec

input AUD_ADCDAT

output AUD DACLRCK, //DAC channel clock
output AUD DACDAT,

output AUD BCLK //Bit clock

// divided by 256 clock for the LRC clock, one clock is oen audio frame

eg [7:0] lrck divider;

// divided by 4 clock for the bit clock BCLK

reg [1:0] bclk divider;

» [15:0] shift out;
g [15:0] shift temp;

wire lrck = !lrck divider[7];

//assigning clocks from the clock divider
assign AUD_ADCLRCK

assign AUD_DACLRCK

assign AUD BCLK = bclk divider[1];

g data as last bit of shift register

assign AUD DACDAT = shift out[15];

// assignin

always @(posedge clk) begin
if (reset) begin|
lrck divider <= 8 hff;
belk divider <= 2’ bll;
end else begin|
lrck divider <= lrck divider + 1’ bl;

belk divider <= bclk divider

//first 16 bit sample sent after 16 bclks or 4%16=64 mclk
assign sample end[1] = (lrck divider
//second 16 bit sample sent after 48 bclks or 4#%48 = 192 mclk

assign sample end[0] = (lrck divider

of one lrc clk cycle (254 mclk cycles)

sample req[1] = (lrck divider == 8 hfe);

after bclk is set
¢ = (belk divider == 2°b10 && !lrck divider[6]);

// high right before bclk is cleared

wire clr belk = (bclk divider == 2’bll && !lrck divider[6]);

//implementing shift operation to send the a

always @(posedge clk)

shift out <= 16 h0;
shift temp <= 16’ h0;
shift out <= audio output;

shift temp <= audio output;

else if (clr lrck)

begin|

shift out <= shift temp;

else if (clr belk == 1)

shift out <= {shift out[14:0], 1’ b0};

end|

enda

endmodule]

9.2.5 Audio_Top.sv

io codec code taken from
//Howard Mao’ s FPGA blog
//http://zhehaomao. com/blog/fpga/2014/01/15/sockit—8. html

//MOdified as needed|

/* Audio_ top. svV|

Contains the top—level audio controller. Instantiates sprite ROM blocks and

communicates with the avalon bus */

module Audio top (
input 0SC 50 B8A, //reference clock
input [1:0] audio ctrl,
inout AUD ADCLRCK, //Channel clock for ADC
input AUD_ADCDAT,
inout AUD DACLRCK, //Channel clock for DAC
output AUD DACDAT, //DAC data
output AUD XCK,
inout AUD BCLK, // Bit clock

output AUD I2C SCLK, //I2C clock

inout AUD_T2C SDAT, //12C datal
output AUD MUTE, //Audio mute)
input [3:0] KEY,

input [3:0] SW

// output [3:0] LED

wire main clk;

wire audio clk;

assign reset = !KEY[0];

//reg ctrl;

//wire chipselect = 1;

wire [1:0] sample end;
wire [1:0] sample req;

wire [15:0] audio output;

//Sound samples from audio ROM blocks
wire [15:0] M_hrt;

//wire [15:0] M_bgm;

wire [15:0] M_dfd;

wire [15:0] M _ddg;

//Audio ROM block addresses

wire [13:0] addr_hrt;

wire [13:0] addr_ddg;
wire [12:0] addr_dfd;

//wire [16:0] addr bgm;

//Store sounds in memory ROM blocks

hrt hrt (. clock (0SC 50 B8A), .address(addr hrt), .q(M hrt));
ddg ddg(. clock (0SC 50 B8A), .address(addr ddg), .q(M ddg));
dfd dfd(. clock (0SC_50 B8A), .address(addr dfd), .q(M dfd));

//generate audio clock
clock pll pll (
.refclk (0SC 50 B8A),

.outclk 0 (audio clk),
.outclk 1 (main clk)

//Configure registers of audio codec ssm2603

i2c av config av config (

.clk (audio_clk),

.reset (reset),
.i2c_sclk (AUD_I2C_SCLK),
.12c_sdat (AUD_I2C_SDAT),
.status (LED FAKE)

logic [3:0] LED FAKE;

assign AUD XCK = audio clk;

assign AUD MUTE = (SW != 4’b0) ;

//Call Audio codec interface

.reset (reset),

.sample end (sample end),
.sample req (sample req),
.audio output (audio output),

. channel sel (2'b10),

. AUD_ADCLRCK (AUD_ADCLRCK),
. AUD_ADCDAT (AUD ADCDAT),

. AUD_DACLRCK (AUD_DACLRCK),
. AUD_DACDAT (AUD_DACDAT),

. AUD_BCLK (AUD_BCLK)

//Fetch audio samples from these ROM blocks
audio effects ae (|
.clk (audio clk),
.sample _end (sample end[1]),
.sample req (sample req[1]),
.audio output (audio output),
.addr bell (addr bell),
.addr dfd(addr dfd),
.addr ddg(addr ddg),
.addr hrt(addr hrt),
M_dfd(M_dfd),
.M ddg(M ddg),
M hrt(M hrt),

.control (audio ctrl),

.ctrl (KEY[3:1])

Endmodule

9.2.6 i2c_av_config.sv

// Original audio codec code taken from

output i2c sclk, //I12C clock

inout // 12C data out

output [3:0] status

i2c data;

lut data;

lut _index =
parameter LAST INDEX =
i2¢_start = 1'b0;

wire i2c_done;

wire i2c ack;

//Send data to I12C controller

i2¢ controller control (|

.i2c sclk (i2c sclk)

.i2c sdat (i2c_

.i2c data (i2c data),

.start (i2¢ start),
.done (i2c done),
.ack (i2c¢_ack)

//configure various registers of audio codec ssm 2603
always @(k) begin|
case (lut_index)

lut_data <= 16’ h0c10; // power on everything except out
lut_data <= 16’ h0017; // left input
lut_data <= 16’ h0217; // right input
lut_data <= 16’ h0479; //
lut_data <= 16’ h0679; // right output
lut_data <= 16’ h08d4; // analog path
lut_data <= 16’ h0a04; // digital path
lut_data <= 16’ h0e01; // digital IR

lut data <= 16" h102c; // sampling rate

lut_data <= 16" h0c00; // power on everything
lut_data <= 16’ h1201; // ac
default: lut data <= 16" h0000;

endcase

:0] control state = 2’ b00;

status = lut index;

s @(posedge clk) begin|

lut index <=

i2¢ start <=

control state <= 2'b00;
else begin|

case (controlistatc)

i2¢c start <= 1’bl;
i2c_data <= {8 h34, lut data};

control state <= 2’ b01;

endmodule]

