CSEE 4840
Embedded System Design Lab 1: Using the FrPGa

Stephen A. Edwards, Columbia University

Spring 2016

Learn how to compile and download an FpGa-only project to the SoCKit board. You will add
functionality that allows a user to display and edit the contents of a 16 x 8 bit RAM.

1 Configure the Board

Set the JTAG scan chain to include the HPS
but not the HSMC by setting sw4.1to “1” (off)
and sw4.2 to “o0” (on) (upper right corner of

the top of the board).

JTAG is the serial protocol we use to config-
ure and debug the FpGA.

The HPs refers to the ARM processor and its
peripherals; the HsMc is the high-speed mez-
zanine connector on the board, which we
will not use in the labs.

Set the FPGA configuration mode switches (sw6, on
the bottom of the board) to oooo11.

The MsEL switches control how the FrGa loads its
configuration when it is powered on.

R351
CODEC_SEL

Set jumpers Jj15-J19 such that
BOOTSEL[2:0] is 100 and
CLKSEL[1:0] is 0o.

>CLKSEL1

)

BooOTSEL controls how the ArM
processor boots; 100 sets it to boot
from the FpGA. This effectively dis-
ables the processor from booting—
what we want for this lab.

CLKSEL controls the speed of the
HPs peripherals; oo is slowest.

~SW1__SWO
2 Download and Unpack the Lab 1 files

Download labi.tar.gz from the class website and extract it by typing tar zxf labi.tar.gz. This
will create a lab1 directory containing the files listed below.

Name Contents

lab1.qpf Quartus Project File. Select this when opening a project.
lab1.qst Quartus Settings File: lists FPGA type, pin names, project files
lab1.sdc Synopsys Design Constraints: clock pins and frequencies for

the timing analyzer

vGA_LED_Emulator.sv A module that emulates 8 seven-segment LEDs on a VGA
monitor connected to the SoCKit.

lab1.sv Skeleton lab 1 code: the memory, a seven-segment decoder,
the controller, and a top-level module that connects these.
Your assignment: modify this file.

SoCKit_Top.sv SystemVerilog top-level module for the SoCKit board. Top-
level pins and default outputs. Instantiates the LED emulator
module and the labr module.

Makefile Instructions for building labi.tar.gz and for cleaning up un-
needed files.

3 Compile and Download the Project

Start Quartus (type quartus). Select lab1.qpf with File—~Open Project....

Compile the design by selecting Processing—Start Compilation. This will take a while. If all
goes well, you should see Quartus II Compilation was successful.

Download the generated file to the SoCKit board. Select Tools—Programmer.

If “NO Hardware” File Edit View Processing Tools Window Help :] ']
appears, tlll’n on the No Hardware Mode: []TAG :] Progress: []
SoCKit board and CliCk Enable real-time ISP to allow background programming (for MAX Il and MAX V devices)
on Hardware Setup- .. File Device Checksum Usercode Program/ Verify Blank- Examine
iiStart Configure Check
@b Stop
<« Ll
and SeleCt CV SoCKit. Hardware Settings | JTAG Settings

Available hardware items

Hardware
CV SoCKit

Select a programming hardware setup to use when programming devices. This programming
hardware setup applies only to the rurrant aranrammer window

Currently selected hardware: |[ESTo 44 B EEXG| s

- No Hardware

Server Port Add Hardware...

Local 1-4.6
Remove Hardware

Click on “Auto Detect”” It should report that
it found devices with a shared yTAG 1D. Select
“5sCSXFC6D6ES” and click ok.

Answer “yes’ if it asks to update the Program-
mer’s device list.

Close

Found devices with shared JTAG ID for device 1. Please select your device.

S5CSEBAG

S5CSEBAGES

S5CSEMAG

5CSTFD6D5

S5CSXFC6CH

S5CSXFC6CBES

S5CSXFC6D6

® 5CSXFC6D6ES

Click on 5CSX... device in fie Edit View Processing Tools Window Hep = Search altera ®

the JTAG Chain to hlghhght »Hardware Setup... | | CV SoCKit [1-4.6] Mode: |JTAG s Progress: D
the ﬁrSt 1ine, then Click on Enable real-time ISP to allow background programming (for MAX Il and MAX V devices)
“Change File. .. ,” enter the out- T File Device Checksum Usercode Program/ Verify Blank-
whStart Configure Check
put ﬁles djrectory and select output filelabl sof_SCSXFCEDGF31CAES _00B11F20 00BL1F20 &, M M
— "Stop <none> SOCVHPS 00000000 <none>

lab1.sof, which the compila-
tion process should have gen- =, ...
erated. "addrie.. || @

{4 Auto Detect

Click the “Program/Config- & change File.
ure” checkbox for the 5CSXF... Hsaverie
device: see the image on the add Device
right.

bUp 5CSXFCEDGF31ES

i : JALT=RA
v —
SOCVHPS

Click “Start” It should take a
couple of seconds: the progress bar

should go from left to right and fi-

nally announce Success. _

Turn on sw[o] (rightmost on the .

board) by pushing it up. The .
vGA screen should now display

CSEE4840 in a red-on-black seven-
segment style.

Now, switch off sw[o] and try pressing the four keys on the right of the SoCKit board. The
display should change.

4 The Lab 1 Design

Hex-7 seg
Decoder hexo
KEY[0] — a
din dout
KEY[1] — 16 x 8 -
we _
KEY[2] —{ Controller RAM X788 pexs
clk Decoder
KEY[3] —
clk "
ex-7 seg b
T Decoder X3

Implement a memory display and modification circuit according
to the block diagram above. The circuit should always display the
address and contents of one of 16 byte-wide memory locations.

Have KEY3 and KEY2 increment and decrement the address and
KEY1 and KEYo modify its contents. The KEY inputs are active-low
signals from the four pushbuttons on the right side of the SoCKit
board. See the SoCKit User Manual for details.

The vGa LED emulator displays the hex signals on the screen.
hexo[o] controls the “a” segment of the leftmost digit, hexo[1] is
the “b” segment of the leftmost digit, hexy[2] is the “c”

¢” segment
of the rightmost digit, etc.

Modify the code in lab1.sv to implement your lab. Put your names and unis in the comments.
Turn off sw[o] when you are developing your code so you can see its output.

Submit your modified lab1.sv file on Courseworks.

	Configure the Board
	Download and Unpack the Lab 1 files
	Compile and Download the Project
	The Lab 1 Design

