Switch ON
An FPGA based Switch

Ayush Jain(qj2762)
Donovan Chan(dc3095)

Shivam Choudhcry(503<?73)

o

B\ “\wmm MR \\\ ©'
\“‘ 0)‘0 Mgy, ‘.”fO‘

S \\ E \

A\

L1111}

1171 w— R R

Y1
|/,\\\

— | n\ N\ 7S
— IN\§

—— L

1.1
1.2
1.3

2.1

2.1.1
2.1.2
2.1.3

3.1
3.1.1
3.1.2

Intfroduction

Aim

[Evaluation of Ideq|

Hardware Design

Network Fabric|

Crossbar SwitchModel.................... oo
DV A
Scheduling Algorithm|

Software

Implementation detaiils |
Packet Generafor| o

NVAlIAOTON . . oo

Metrics

Milestones

1.1

1.2

1.3

LEEN
:JM|

. r

L fa;'r-,.l

I+

St == sl

5 _ al nf,i -
‘@e ("R 112, Worl@! |

. F e

r

Aim

The idea is to create a FPGA based switching fabric. The main focus of the project is
in optimising the throughput of a network switch through the implementation of a scheduler.
Decoding of actual incoming packets will not be considered in this projectﬂ Therefore

the packets being generated will contain randomly generated payload and a header that
determines the output port.

Overview

We will be creating a scheduling algorithm that optimizes the throughpuﬂ We will be
implementing the crossbar switch and the scheduler in the FPGA. Our packet generator
software would interface with the FPGA memory and would be used as a simulator for
generating random packets destined for different output ports. Furthermore to evaluate that
the scheduler routed the packet properly, we would be designing a validator which would
interface with the output memory of the FPGA and would determine if the packets were
correctly routed.

Evaluation of Idea

We would do a comparative study between the throughput obtained by running a scheduling
algorithm and one without it. Though we know that the scheduling algorithm will be faster

'"When we say we won’t be decoding actual incoming packets we mean that we don’t care if the packet
is actually a proper IP packet.

2We define throughput to be the number of packets coming out from the output port in one clock
cycle.

™

b

3

¥

4 Chapter 1. Introduction

but we would like to know by how much. Benchmark tests will be used to evaluate the

validity of the scheduler and its effectiveness in maximising throughput of the network
switch.

Network Fabric

A network switching fabric is the hardware topology of the network that is laid out and is
responsible for routing the input packet to its respective output port. The network fabric
being employed in this project will be the Crossbar architecture. The crossbar architecture
is basically a network topology that is in the form of a matrix as shown in Figure 2.1|below:

Input 1 4

Input2 g L

Input 3

Qutputl Output2 Output3

Figure 2.1: Illustration of the Crossbar Architecture that will be responsible for the net-
work switching fabric

6 Chapter 2. Hardware Design

So there is 1-1 matching between the input port and the output port. The Input(1,2,3)
denotes the line cards which will be receiving the packets destined to different output port
but one which is not known beforehand.

Crossbar Switch Model

In this project, we will be using a single layer 4 x4 topology with 4 inputs and 4 outputs.
The Figure [2.1] above illustrates how every input is being connected to every output by
the intersections of the matrix, termed crosspoints. The implementation of the crossbar
switch model will be done on the FPGA. Each input to output connection is completely
independent of each other and can therefore support simultaneous communications, except
in the case when two ports wish to use the same output port.

How the Crossbar Switch Works

The crossbar switch architecture works in a similar way to that of active addressing in an
LED(Light emitting diode) matrix. The inputs are connected to every output by lines that
can be turned on and off depending on the destination of the source packet. For example
in Figure [2.1] the orange line shows how the input 1 is able to send a packet through
the network fabric to output 2 by turning on it’s horizontal line and the vertical line that
corresponds to output 2. As mentioned earlier, the lines are independent of one another and
therefore in a single time slot, both input 1 and input 2 can send packets to outputs 2 and 3
respectively without colliding. Theoretically and in some cases practically it is possible to
get nE| number of packets in the output.

It can therefore be seen that the primary concern with congestion in the network is
caused by the phenomenon known as Head-Of-Line(HOL) blocking. This is the result when
two input ports wish to send a data packet to the same output at the same time. This is
further illustrated in the Figure[2.2]

From Figure [2.2] it can be seen that in 1 single clock cycle, if both inputs 1 and 2 wish
to send a packet to output 2 then HOL occurs because there is congestion in the network
switching fabric that does not allow the connection to be made. Therefore a scheduler will
be implemented to provide an algorithm that can optimise the sending of packets through
the switching fabric such that in any 1 clock cycle, there will be a maximum number of
packets being sent through the network.

!where n is number of output ports,in this case 4

2.1 Network Fabric 7

Inputl | B
Input2 g _ = 4
Input 3

Outputl Output2 Output3

Figure 2.2: Illustration of the HOL blocking in effect

DMA

Direct memory access (DMA) allows hardware subsystems to access main system memory
(RAM) independently of the central processing unit (CPU).

Without DMA the CPU uses programmed input/output and is typically fully occupied
for the entire duration of the read or write operation. It is thus unavailable to perform other
work. With DMA, the CPU first initiates the transfer, then it does other operations while the
transfer is in progress, and it finally receives an interrupt from the DMA controller when
the operation is done.

We plan to use DMA for all memory accesses within the FPGA. This basically means
the reads/writes during the scheduling algorithm as well as during packet transfer will be
achieved using DMA. The aim is to cover this during the third phase of the project.

Scheduling Algorithm

Along with modelling the crossbar switch model, the FPGA also runs a scheduling algorithm
which tries to optimize the throughput achieved by the switch. This is done by avoiding any
instances of Head-Of-Line Blocking explained above. The scheduler algorithms swaps any
packets that can lead to congestion on an output ports with the ones behind in the queue.
Lets take an example to understand this in greater detail.

Let us assume a system of 3 input and 3 output ports. The packet queues is as given
in the Table 2.1| below. The Location 0 represents the front of queues at all input ports,

Chapter 2. Hardware Design

location 1 represents the next packets on all ports and so on.

Buffer | Location O | Location 1 | Location 2 | Location 3
Input 0 | 2 2 1 1
Input1 | 0 1 0 2
Input2 | 1 2 2 0

Table 2.1: Packet schedule at time O

As we can see that the packets at Location 0 are optimized for maximum throughput.
The scheduling algorithm at this point works on the Location 1 and tries to maximum the
throughput for the next transfer. It is visible that in Location 1, the packet at port O and 2
both are destined to the output port 2 and there is no packet for port 0. Also, the Location
2 has a packet for the output port 0. Hence, if we swap one of the packets for port 2 from
Location 1 with the port 0 packet from Location 2, we can improve performance. That’s
exactly what the scheduling algorithm does. The Table [2.2] below shows the updated queues
in the next clock cycle according to the change.

Buffer | Location O | Location 1 | Location 2
Input 0 | 2 1 1
Input1 | 1 2 2
Input2 | O 2 0

Table 2.2: Packet schedule at time 1

Again, we have a similar situation at Location 1 and 2 and efficiency can be improved if
we do the same swap. After a similar change, the packets in the next clock cycle are shown
below in the Table

Buffer | Location O | Location 1
InputO | 1 1
Input1 | 2 2
Input2 | 0 2

Table 2.3: Packet schedule at time 2

The process continues till we have a continuous stream of packets at the input ports. If
lets say that the ports at Location 1 were the last set of packets, then there is no optimization
that the scheduling algorithm can do. And the packets would take two clock cycles to be
transferred given by the below two Tables[2.4]and [2.5]

2.1 Network Fabric Q

Buffer | Location O Buffer | Location O
Input O | 1 Input O | -
Input 1 | 2 Input1 | -
Input2 | 2 Input2 | 2
Table 2.4: Packet schedule at time 3 Table 2.5: Packet schedule at time 4

Implementing Scheduling Algorithm on FPGA

We plan to implement the scheduling algorithm on FPGA. The niive version of our algorithm
will run once on each packet in a queue and after every iteration would guarantee the best
possible combination such that the throughput is maximized. So consider the case as shown
in Table In this case the algorithm would color(or mark) that in input queue 1 output 2
is found. If the second input queue has same packet destined for output 2 we would try to
swap it with other packets destined for ports other than 2.

3. Software

Our main focus would be in optimizing the switch and the scheduling algorithm. This gives
us certain simplifications that can be useful in designing the system.

3.1 Implementation details

Our task becomes a lot simpler cause we don’t have to implement the actual decoding of
the packet. So we will be assuming the following:-
e The packets will be just collection of 8 bits. Eg 10001010 where the last two bits(from
left side) will denote which port it will be going to.
e The Switch has three input ports which are buffered and interfaces with a chunk of
output memory. Refer Figure [3.T|for more actual architecture.

Input
Queue(s) *

\ "

Qutput Queue(s)

Figure 3.1: Illustration of the Input Architecture which interfaces with the FPGA

3.1 Implementation details 11

Packet Generator

The packet generator will generate random bits of which the last two bits will be used as
an output port number. Table[3.1|shows the IO mapping based on the last two bits of the
packet. We are planning on implementing a 4 x 4 switch in FPGA hence we can handle 4
input ports in the switch.

We assume that the line cards (input lines) have already decoded the packet and a chunk
of memory is interfaced with them. Also once the packet generator has generated the
packets one round of scheduling algorithm (see next subsection) to sort the packets in a
way that tries to maximize throughput in every cycle. We know that sometimes
it might not be possible to optimize the throughput(because of data constraints-all packets
want to go to port x).

Last Two Bits | Output Port
00 Port 0
01 Port 1
10 Port 2
11 Port 3

Table 3.1: I/O Mapping

Validator

After the FPGA processing when the packets are routed to their appropriate output ports
(modeled by memory locations) the validator runs and checks that the packets should be
stored on correct memory locations. As discussed above, the generated packet consists
of random sequence of bits with the last two bits representing the destination port. The
validator makes sure that this values matches the memory space in which the packet is
stored and reports any errors encountered.

The validator validates the packets twice when the FPGA runs with and without the
scheduler algorithm and creates a comparison report for the two. The most important metric
captured by the validator has to be the accuracy achieved by the switch, i.e., all packets
reach the port they were intended to. This should ideally be 100% as we do not see the
scope for any loss/misrouting.

The validator will also capture other metrics like the performance difference (time
difference) between the FPGA run in the two modes. This will be generated with the help
of the hardware. A comprehensive list of the different metrics follows in a later section.

CA. Metrics

Through this project we aim to draw some comparison between the throughput with sched-
uler and without scheduler. So we will be designing the project in such a way that we can
evaluate throughput over a longer period of time with and without the scheduler running.

Our end goal is to build a system which will show some real time statistics about the
data being processed through it. It can show it in form of a running graph or through plain
stats.

R Metrics basically should not be a chapter but the picture was so nice we couldn’t stop
ourselves.

—
=T

[5. Milestones

Milestone 1
— Thursday, March 31 The first stage of the project will be to achieve basic
interfacing with the FPGA. THe main goal of this milestone is to have a packet
generator generating 8bit packets where 2 of the bits will be used as the header
of the packet and then storing the generated packets into a memory location on
the FPGA.
Milestone 2
— Tuesday, April 12 The second stage in the project will be to create the crossbar
switching fabric on the FPGA and validate its functionality. At this stage, we are
not concerned with maximising throughput through the network switch, the only
concern is the proper function of the crossbar architecture. The results obtained
from this stage will serve as the primary benchmark on which we compare our
optimisation algorithm on.
Milestone 3
— Tuesday, April 26 The third stage in the project will be the creation of the
scheduling algorithm and testing the throughput through the network switch.
The results will be compared to the initial benchmark tests done in stage 2 and a
plotted graph will show the throughput of the switch at various loads. Evaluation
of our scheduling algorithm will also be done at this stage.
Milestone 4
— Thursday, May 12 The final stage of the project will be to implement DMA for
our read and writes within the FPGA. Documenting our findings, formulating a
report and preparing for the project presentation will be another crucial part in
the last stage.

14

Chapter 5. Milestones

Figure 5.1: Finally

	Introduction
	Aim
	Overview
	Evaluation of Idea

	Hardware Design
	Network Fabric
	Crossbar Switch Model
	DMA
	Scheduling Algorithm

	Software
	Implementation details
	Packet Generator
	Validator

	Metrics
	Milestones

