CSEE 4840 Project Design
A Tower Defense Game: SAVE CROPS

Team Members:
Liang Zhang (1z2460)
Ao Li (al3483)

Chenli Yuan (cy2403)
Dingyu Yao (dy2307)

Introduction:

In this project, we plan to design and implement a tower defense game, named “save the
crops”, which background is based on resisting several of pests. The basic original intention of
the designer was that the user could make any strategy they want, and building up various kinds
of defense tower besides the path that pests attacking and towers have to wipe out the pests in
order to save crops. The attackers or the pests are prototyped coming from normal pests in
people's daily lives, for instances fly, worms, and locusts. We design different characters with
different features of appearance and characteristics, such as different life article, different attack
techniques, and different defense ability. The user would get monetary rewards in each time the
tower killing any pests, the system will reward user different kind of items they need
automatically and randomly. By using advantage of the money rewards that system gives to
user, they would call system help to large-scale destructive pests or upgrade tower
characteristics for getting more powerful attacking ability. For the mapping arrangement, we are
going to have single path from left most screen (source) to the right most screen (destination).
The path will be looks like S type and we have path mirror that the map is bilateral symmetric.
Once three attackers or pests moving from the source point to the destination point, the
user is defeated, in other word, the game is over. User has to choose play again or exit.
Since user getting more money rewards and reaching to specific level or passing the
elementary level of the game, higher-level pests will appear to the game and user would
build up higher level of defense tower correspondingly. The designer would potential let
the game permanent, unless user does not want to continue the game and allow at
least three attackers pass through the path to destination.

Besides the basic design idea or key points for this project, there are other key factor
issues that designer need to consider and handle carefully. First is the VGA display,
because map has a lot of different attackers, and towers, and other background
features. We need to rewrite the driver and use different methods to solve the static and
dynamic figures, such as applying sprite. Second feature point is the algorithm issue.
For both attackers and defenders, designer needs to set up attackers moving along the
designed path, and following different behavior and movement while they are under
attack. For the defense facilities, what's more, designer need to come up with different



characteristics based on different user level. Furthermore, what is the algorithm that
defender attacking pests will also need to be considered carefully, because it directly
dominates the fluency of the game and victory, defeat conditions.

Design Block Diagram:

After consideration, we initially draw a high-level block diagram as below:

As in the figure, we have a NIOS Il CPU and four major peripherals: VGA display,
controller, storage part and audio output module. All of above are connected to the
Avalon bus so that they could communicate with the NIOS Il CPU. For instance, we
apply the controller and left click to generate an input signal in the controller and
transfer it to the CPU through the bus. The CPU recognizes the input, does the
operation and passes the control signal to corresponding peripherals.

And after the control signal dealt with in the controllers, the peripherals generate output,
such as showing figures on the screen or generate sound effects from the speaker.



In the VGA module, we plan to use the frame buffer to display different sprites. The
reason we choose to use the sprite graphic display is that we have many pictures such
attackers and towers, and their behavior is mutually independent. So we can better
control them by laying them on different sprites. So there will be one sprite control part.
Meanwhile, we will also design a normal VGA control module, with which we can show
every pixel on the screen as in the lab3.

For the controller, we need to do the similar job as we did in lab2. The difference is that
we change the peripheral from keyboard to controller. The header file is given online, so
we need to write the C file of the controller according to the lecture and some other
materials we have researched online.

Next is the storage module, after the initial estimation, we decide to use the 512KB
SRAM on the board to store the pictures and short sound effect waveform. To read from
and write into the SRAM, we need to design a SRAM controller, which is the key point in
this module.

Finally comes to the audio module. In this project, we just need some short music as the
sound effects in some specific cases such as attacking the attackers, the attackers die,
winning or losing the game at the end and etc. We can refer to the FM Sound
Synthesizer part of lab3 and do some revision according to the practical situation.

Algorithm:

In this section, the basic game logic will be discussed. It can also be considered as a
tutorial for this tower defence game.

The screen will be sliced into a grid. A path will be generated based on our setting. A
certain amount of pests will occur at the beginning of the path. Then they will move
along the path and try to reach the end of the path, the barn that storing all the crops.
From the point of the code, each the pest will be considered as a set of coordinates
which can represent their current location and a value that represent their health point.
The coordinates increment following the pattern of the path. Once the pests are
attacked by the plants, their health points will be reduced according to the attack of the
plants. If their health points become zero, pests die which means that their coordinates
will be eliminated from the program. If their coordinates turn out to be identical with the
destination, the coordinates of the barn, they will vanish too and the value displayed on
the barn will accumulate. Once this value reaches a certain number, the player fails. On
the other side, the player can use XBOX controller to build the defence in order to
defence the barn. Typically, the player can press the up, down, right, left buttons to
move a cursor through the grid, which will highlight the corresponding blocks in the grid.



When the player press one of the control buttons, then the cursor will become a plant.
And the play has to choose which plant to be planted in the ground. There are three
different kinds of plants, one can do the normal attack, one can slower down the pests,
and one can do damage over an area. All these plants will have certain attack ranges.
The program will always calculate the distance between the plants and the pests. Once
the distance is smaller than the attack range, the program can calculate the trajectory
and the bullet will be generated along the trajectory periodically. The plants will always
attack the first pests that move into their attack range. Their target will change until the
first pests vanish or they just move out of the attack range. Once a pest is eliminated,
the player will gain some coins as a reward. These coins can be used to plant new
plants or upgrade original plants. As a wave of the attack is dissolved, the player will
have several seconds to build or upgrade. Then the next wave of more pests will be
ready to try to reach the barn.

Hardware:

Audio Controller Implementation

[2C_SCLK =ty
Audio/Video
[2C SDAT =i Configuration
CLOCK_50 ‘
Y Y
read_ready
AUD_BCLK = WEIE Tey
2 < read
AUD_ADCLRCK == Audio B T
AUD DACLRCK =i CODEC readdata_left - Our Circuit
AUD_ADCDAT —— Interface readdata_right
AUD DACDAT writedata_left
N ~ writedata_right
AUD XCK - J
CLOCK2_5() =i Clock Generator




The left-hand side of the above figure shows the inputs and outputs of the system.
These 1/0O ports supply the clock inputs, as well as connect the Audio CODEC and
Audio/Video Configuration modules to the corresponding peripheral devices on the
board. In the middle of the figure, a set of signals to and from the Audio CODEC
Interface module is shown. These signals allow the circuit depicted on the right-hand
side to play the background music via speakers.

The system works as follows. Upon reset, all the music data will be stored in the RAMs
of on-board peripherals. To output sound through the speakers a similar procedure is
followed. Our circuit would observe the write_ready signal, and if asserted write a
sample to the Audio CODEC by providing it at the writedata_left and write-data_right
inputs and asserting the write signal. This operation stores a sample in a buffer inside of
the Audio CODEC Interface, which will then send the music data to the speakers at the
right time.

VGA Display Implementation

The VGA screen we use in this project is 640*480. In order to save memory and minimize
redundancy, we divide the screen into 300 grids of 32*32 pixels. (640/32 = 20, and 480/32 = 15)
Design the monsters, towers, bullets, background textures, icons, and other function buttons
with this fix size of 32*32.

The Ul will consist of three parts: Information bar, map area, and control panel. The information
bar is on the top of the screen showing LIVES, COINS, and LEVEL; the map lies in the middle
displaying game area, where player have control to place tower; and on the bottom is the
control panel includes START, TOWER SELECTION, and PAUSE.

One of the main challenges in displaying is to make the motion of monsters and bullets
smoothly. In order to generate those elements continuously without overlapping display, we
implement sprites. Each monster have two sprites for their normal state and attacked state.
Towers are displaying using sprite for placing at any designed spots. There are two background
textures, grass and road on sprite, manipulate the position of two texture we are able to
implement the the monster attacking route. Finally, icons and control buttons are also
implemented on sprite.

In a video framebuffer display each pixel’s display requires 3*1Bytes RGB values. Summing up,
in this game there will be three monsters each with two states (Normal/Injured):
3*2*32*32*3*1Bytes; Four towers: 4*32*32*3*1Bytes; One bullet: 32*32*3*1Bytes; Start and
pause buttons: 2*32*32*3*1Bytes; Live and coin icons: 2*32*32*3*1Bytes; And two background
texture: 2*32*32*3*1Bytes. The total memory for images is roughly 52.5KBytes.



Elements Image list # of images Size (pixels) Actual Total
Size (KBytes)
Monster Fly 2 32*32 6
Worm 2 32*32 6
Locusts 2 32*32 6
Tower Corn 1 32*32 3
Eggplant 1 32*32 3
Lettuce 1 32*32 3
Beet 1 32*32 3
Background Road 1 32*32 3
Grass 1 32*32 3
Bullet Bullet 1 32*32 3
Icons Heart 1 32*32 3
Coin 1 32*32 3
Button Start 1 32*32 3
Pause 1 32*32 3
Total: 17 51

XBOX Controller Inplementation

The controller we choose to work with our hardware is Xbox 360 wired controller. The game
receives the operation signals from the controller to move the pointer and build/remove towers.
To be specific, D-pad will be used to control the pointer. A button will be used for confirm and
build. B button will be used for exit, remove and cancel. The controller is shown in the figure
below.



The Xbox 360 controller for windows can be directly connected to the SocKit Board and
communicate with the CycloneV Soc FPGA through USB port. The Xbox 360 controller is in
brief a USB compound device that consists of a USB gamepad and a two-port USB hub. The
USB cable and the built-in memory unit connector carries five signals, four of which are
standard USB signals and the rest is a clock signal. The input report of the controller is 20-byte
HID report format. Data in Offset+2 contains the information of digital buttons including the
D-pad. Bit0 is D-pad up, bit1 is D-pad down, bit2 is D-pad left and bit3 represents D-pad right.
Offset+4 is unsigned 8-bit A button signal, and Offset+5 is unsigned 8-bit B button signal.

Thus a game controller driver should be built using SystemVerilog and the interface for the
game controller will be implemented in C. The Sockit board provides USB interfaces with SMSC
USB3300 controller. A SMSC USB3300 device is used to interface to a single Type AV
Micro-USB connector. The device supports ULPI interface to communicate to USB 2.0 controller
in HPS. The ULPI PHY can operate in Host or Device modes. In the project, the PHY should be
configured to device mode to receive the signals from the game controller.

Milestones:

1 Design and display the structure of game map on the screen
Design different models for pests and plants in the game

2 Work on and implement the behaviour of the controller
Build the sound effect and background music
Achieve code and build the basic level of the game

3 Achieve level increment and upgrading the plants
Finish coding software and hardware configuration
Testing and debugging the game




