CSEE 4840 Embedded System Design

DESIGN DOCUMENT

[85]lcu raCING

RANKINGS CARS 1s
CARZ Znd
CAR | 3d
CARY 4™

Chandan Kanungo (ck2749)
Raghavendra Sirigeri (rs3603)
Robert Kettlewell (rbk2135)

Shikhar Kwatra (sk4094)

Introduction

CU Racing is a retro 2D car racing game. Both single and multiplayer modes will be supported.
Single player mode will allow players to refine their skills and compete in time trials. Alternatively, the
two player option will enable each gamer to compete with each other using their respective USB
controllers.

The game involves three different tracks to choose from. Each track has different friction
coefficients and bend radii. Players have to trade off speed and control or risk falling off the track
resulting in time penalties. Furthermore, opponent vehicles will be able to bump one another off the
track, which introduces some strategy to the play beyond maximizing driving speed. Once all the cars
have completed the total number of laps, the race ends and a new track is selected. Once all three
tracks are complete, the game will end and return to the main menu.

UX Flow/Game Experience

1) Start Page includes the following options: SINGLE-PLAYER, MULTI-PLAYER, RACE STATISTICS
and QUIT
2) Once the multiplayer settings are entered, the game navigates to a new page which displays
various TRACKS and CARS to select from.
O Each TRACK has a different friction coefficients.
O Each CAR has different STEERING CAPACITY and MAX SPEED.
3) The game then navigates to the actual race which includes the selected TRACK and CAR with
game stats PLAYER POSITION, TOTAL TIME ELAPSED, LAP displayed on the top right corner.
O skids and rotations based on the track selected based on the game engine (cuphysics)
O Dynamic sound generation based on position on the track, accelerating speed and
collision events with a continuous background tone always playing.

[E&Jcu racivG an
aa A N

Speaker

[=1)USB Hub

XBOX Controllers

Figure 1 -Standalone SoCKit board for local play.

System Level Architecture

4 N

(stdio.h]
lr pthreads.h]
E— cuinput.h]-—[Xpad.h
- —]
% cutracks.h H cuTrackData.txt }
| — curules.h

cuphysics.h < [math.h }

[

[

mainrace.c [« [
' —{

(

[cuutil.h

]
]
cugui.h]
| | HPS

\[— Application /

Cyclone V

[HPS <->FPGA Bridge

FPGA Fabric

cuCoreCtrl] cuVGA VGA DAQ
K
cuCoreDataPacket ‘ cuSpriteStatus
Az —)
(u&)undﬂlllﬁ;:‘hl Cusprites
32

cuAudio

Avalon Bus

Avalon Slave
Interface

cuHostComm

‘cubataPacketin

cuPacketSwitch

cuSoundGen

Audio Codec

Figure 2 - High-level architectural organization and bus data flow for CU Racing on the Cyclone V SoC.

{

USB: SMSC
USB3300

‘T
v

Audio Codec

SSM2603 B

o

SoCkit Board

VGA DAQ
ADV7123

_

T

External USB XBOX USB
HUB CONTROLLER
Coeaker XBOX USB
P CONTROLLER
VGA
Monitor

Figure 3 - Block level diagram of CU Racing game system.

Software Architecture

HPS Application Level Hierarchy:

"

stdio.h

\

pthreads.h

cuinput.h

LUL

Xpad.h

cutracks.h

Gy

—

cuTrackData.txt

curules.h

cuphysics.h

ﬁ
3
(1]
=4
=
=

)

— NN

4

Figure 4 - CU racing library organization and external dataflow

Filename

Description

mainrace.c Main game engine which imports all CU Racing library dependencies, handles user inputs,
controls and maintains game state, and communicates to the FPGA the sounds and sprite
location updates.

cuinput.h Thin interface to the xpad driver for the Xbox 360 controllers with the restricted set of
buttons and joystick features enabled.

cutracks.h Collection of helper functions that define the unique features of each track: unique name
identifier, sounds, sprites, physics constants (coefficient of friction: on/off pavement) for
each track. Additionally, a geometrical representation of the track will be accessible.

curules.h Contains information regarding the race car attributes, time penalties for crashes, number
of laps per track, time limits, and the game

cuphysics.h Exposes a function which, given past and current state, returns new car position with a
velocity and angle of rotation, unique to each race car’s attributes and track constants.

cusounds.h Contains helper functions that determines race noise events given the car locations, speeds
and track type.

cugui.h Contains the state machine for the acceptable GUI transitions

cuutil.h Timers, race stat utilities, and miscellaneous helper functions will be contained in this file

cudriver.h Interface that wraps the character device driver for the Host-to-FPGA communication. This

file contains additional functions to packetize information into U64 words to be sent to the
FPGA.

Table 1: CU Racing library file descriptions

FPGA Toplevel Hierarchy:

Avalon Slave

cuStatus

cuHostComm 76 cuCoreCtrl cuVGA VGA DAQ
Interface
T A
f.unawpa:.kmm | ‘
64
cuCoreDataPacket
4 | cuSpriteStatus
. cuspriteDataPacket | cuspriteCmd | .
cuPacketSwitch tr cuSprites
cuSoundDataPacket
32 il
g E
-
cuSoundGen cuAudio Audio Codec

Figure 5 - Top-level fpga module organization and external port dataflow

Filename Description

topLevelRace.sv Top level file which instantiates and connects up the modules described below.

cuHostComm.sv Main communication data interface to the HPS and the FPGA. Supports U64 data writes and
U64 status register reads.

cuPacketSwitch.s | Redirects incoming data to the respective control modules: cuCoreCtrl, cuSprites, cuAudio.
v

cuSprites.sv Sprite controller architecture based on the TMS9918 with extensions for flipping images.

cuSoundGen.sv Sound generation capability with multiple pure tone, random noise, and distortion wave
generators with enveloping and mixing features.

cuAudio.sv Controls the audio outputs to the onboard audio codec.

CuVGA.sv VGA controller which receives its display data from cuSprites

Table 2: CU Racing - System Verilog Hierarchy Descriptions

CU_SPRITE_VDP 0x34
CU_SPRITE_REG_7_4 0x30

SPRITE REGISTERS = CU_SPRITE_REG_3_0 0x2C
(0x37-0x20) CU_SPRITE_CONFIG 0x28
CU_SPRITE_CMD 0x24

CU_SPRITE_STATUS 0x20

CU_SOUND_CONFIG 0x1C

SOUND REGISTERS CU_SOUND_CMD 0x18
(Ox1F-0x14) CU_SOUND_STATUS 0x14

CU_CORE_RESERVED 0x10
CU_CORE_RESERVED 0x0C
CU_CORE_SCRATCH 0x08
CU_CORE_CMD 0x04
CU_CORE_STATUS 0x00

CORE REGISTERS
(0x13-0x00)

Figure 6 - Proposed Register Map for CU Racing FPGA hardware architecture.

Packet Transfer Discussion

Our proposed approach is to have the cuPacketSwitch receive U64 packets from the cuHostComm
module which contains all the necessary signaling to act as an Avalon Slave interface. These U64
packets will have an 8 bit address located at the MSB which will contain the destination register
address. This destination register address range will allow the packet switch to redirect the packet to
its appropriate endpoint. The remainder of the packet will consist of a data payload which will contain
the 32 bit register contents.

Race Modeling

The CU physics engine will calculate the position, velocity, acceleration, angular rotation of each race
car as it traverses the virtual tracks. Car bumps and crashes will also be modeled inelastically and
allow for kinetic energy transfer between interacting cars. The model will assume all cars are front
wheel drive and that the center of mass of the car is fixed at the origin shown below in Figure 7.

0
/i

P&)

Figure 7 - Dynamic model constants (posX, posY), V, 8 which the physics engine calculates for all cars
in a given race.

If a player attempts to steer through a bend of the track at a velocity which is sufficiently high, the
normal vector of the front bumper and the velocity vector of the car will diverge (Figure 7: red 6). If
this angular rotation reaches a critical level, the race car will lose control and slow down - incurring a

time penalty for the player.

_ |

Ly

/ /

3
{ I J

Figure 7 - Race car turning through a track bend at a velocity that is too great, resulting in drift and
loss of control.

Race Car Sprites

To support smooth rotation of the race cars as they navigate through the track, there will be 16
sprites with an angle increment of approximately 11.5 degrees (blue box : Figure 8). These sprites will
be able to be mirrored to complete 360 degrees of rotation. Our plan is to start with this approach
and then if we need more fine grain rotation we can cut the angle increment value in half and store
the rotations through 90 degrees.

Car
Rotation
Sprites

Figure 8 - Race car sprite rotations and mirroring.

USB Controller

The XBOX Controller is used for playing the racing game. The Left Analog Stick is used for steering, the
Right trigger for accelerating and Left Trigger for braking. Buttons for PAUSE and RESUME are
configured as well.

Left trigger Right trigger

Left bumper Right bumper

Face buttons

Left stick

Directional pad Right stick
(D-pad)

The Xbox Controller has two main components, USB gamepad and a two port USB hub.
The hub has 3 ports,,.

Portl ------- > Gamepad
Port2 ------- > Memory Unit Slot
Port3 ------- > Memory Unit Slot

The USB cable and the memory unit connector carries five signals, four of which are standard USB
signals and a clock signal,,,.
The Linux kernel includes xpad.c library which supports various XBOX Controllers. The HID Descriptor

Table for the controller is given below,,,

+3 |[0x00 (reserved for more digital buttons?)
offset data =2 |[A button (*)
+0 [0x00 +5 |B button (*)
+1 [[0x14 (size of the whole report) +6 [button (*)
digital buttons +7__|Y button {*)
+8& |jblack button (*)
|bft0"D pad up +9 ||white button (%)
|b|t4 D-pad down 110 L trigger (%)
|bit2||D—|:|ad left +11 R trigger (*)
+2 [[bit3]p-pad right +12 [Jleft stick x (**)
|bit4 start button HIE ek v (1)
> +16 |right stick x (**)
|b|t5 back button 18 |nghtstcky ()
|bit6 left stick press
S : » (*) unsigned 8-bit
M = (**) signed 16-bit, little-endian, north/east positive

Audio Features

The type of generated sounds will be as follows:

1. Count down chimes for the start of the race
Engine acceleration/de-acceleration noises
Braking noise
Skidding noise
Tires off track noise
Crash tone when the car crashes
Simple arcade style piano music for end of race

No U,k wnN

The tones are generated in the cuSoundGen module on the fpga using a mixture of waveform
generating functions. These functions will be optimized to limit their footprint on the FPGA fabric as
much as possible and alleviate the need to constantly stream audio data from the HPS.

As previously described, sounds will vary based on the track and car selections. Mainrace.c will obtain
constants which will be sent to the FPGA and directed to the cuSoundGen module for amplitude,
frequency and waveform mixing adjustments. These tone functions are invoked at specific situations
during the race.

The audio output will be performed via a high-quality 24-bit audio via the Analog Devices SSM2603
audio CODEC (Encoder/Decoder). This chip supports microphone-in, line-in, and line-out ports, with a
sample rate adjustable from 8kHz to 96kHz. The 12C bus interface is used to control the SSM2603. The
pin diagram is as shown below,,:

usg

AUD XCK ! meLkixTi
e o [
= PBDAT
Alm AUD_DACLRCK | . o g
n AUD_ADCDAT | ooy < Lineln ﬁ 5
AUD_ADCLRCK

cw'os'gg'gm V AUD_MUTE b

MUTE
AUD_SCLK

= SCLK
AUD_SDAT SDIN

-~
r

L B i

9 & &

F v ¥

Lime Out O‘ J7

' 9
v

Table 3-14 Pin Assignments for Audio CODEC

Signal Name FPGA Pin No. Description VYO Standard
AUD_ADCLRCK PIN_AG30 Audio CODEC ADC LR Clock 3.3V
AUD_ADCDAT PIN_AC27 Audio CODEC ADC Data 3.3V
AUD_DACLRCK PIN_AH4 Audio CODEC DAC LR Clock 3.3V
AUD_DACDAT PIN_AG3 Audio CODEC DAC Data 3.3V
AUD_XCK PIN_ACYH Audio CODEC Chip Clock 3.3V
AUD_BCLK PIN_AE7 Audio CODEC Bit-Stream Clock 3.3V
AUD_|2C_SCLK PIN_AH30 12C Clock 3.3V
AUD_|2C_SDAT PIN_AF30 12C Data 3.3V
AUD_MUTE PIN_AD26& DAC Output Mute, Active Low 3.3V

The 12C interface can be established using selectable control registers. The write and read sequences
are as given below;

LirabiL]

Figure 28. 2-Wire F'C Generalized Clocking Diagram

Eurﬁﬂ& 5 |m|_.l.t.|‘.tn|.qs: s15[-.|m|u|&m‘ml--lﬂﬂj-ﬁlﬁ! | "|
I———y
B0, mem e

e | ¥ | 3] | o] oy (0|8] o [| ¥] [be s | [oen [4] [|om] K] #

- — - — - — —
L] 1 '
DEVICE REGISTER DEVICE REGISTER
ADDRESS ADDRESS ADDRESS DATA
(SLAVE DRIVE)

2P = STARTISTOP BIT.
A = 2C R BT
A{S) = ACKNOWLEDGE BY SLAVE.
M) = ACKNOWLEDGE BY MASTER.
E'E-M:KNEWLEDGE BY MASTER (INVERSION)

T mz

Figure 29. FC Write and Read Sequences

Each data word is 16bits long, MSB first.

BIT15-BIT9 --------- > Register Map Address

BIT8-BITO --------- > Register Data

SDIN - > Serial Control Data Word

SCLK - > Clock for Serial Transmission

CSsB - > Chip Select Pin to select the slave address

If the CSB pin is set to 0, the address selected is 0011010; if 1, the address is 0011011,

Development Milestones

Milestone 1 (Thursday March 31)

Interface XBOX controller via Xpad driver successfully on SoCKit board
O Wrap interface in cuinput.c

Implement alpha cuSoundGen and cuAudio

Implement alpha cuHostComm and cuDriver for U64 packet transfers

Milestone 2 (Tuesday April 12)

Integrate alpha version of topLevelRace

O Complete alpha cuPacketSwitch, cuCoreCtrl, cuSprites, cuVGA
Complete alpha mainrace.c with its dependent library files
Preliminary artwork
Preliminary GUI complete
Begin alpha testing

O Single player mode should be running fairly smoothly,

Milestone 3 (Tuesday April 26)

Complete beta version of CU Racing C library
Complete beta version of topLevelRace
Refine artwork

Refine UX

Begin beta testing

References

1.

P wnN

http://euc.jp/periphs/xbox-controller.ja.html

http://eleccelerator.com/tutorial-about-usb-hid-report-descriptors/

http://www.analog.com/media/en/technical-documentation/data-sheets/SSM2603.pdf

http://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=816&F

ID=a9e8cb474881606fa975d2420a309fb6

http://euc.jp/periphs/xbox-controller.ja.html
http://eleccelerator.com/tutorial-about-usb-hid-report-descriptors/
http://www.analog.com/media/en/technical-documentation/data-sheets/SSM2603.pdf
http://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=816&FID=a9e8cb474881606fa975d2420a309fb6
http://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=816&FID=a9e8cb474881606fa975d2420a309fb6

