
Names, Scope, and Types

Stephen A. Edwards

Columbia University

Summer 2016

Scope

Types

Types in C

Types of Type Systems

Overloading

Binding Time

Static Semantic Analysis

What’s Wrong With This?

a + f(b, c)

Is a defined?

Is f defined?

Are b and c defined?

Is f a function of two arguments?

Can you add whatever a is to whatever f returns?

Does f accept whatever b and c are?

Scope questions Type questions

What’s Wrong With This?

a + f(b, c)
Is a defined?

Is f defined?

Are b and c defined?

Is f a function of two arguments?

Can you add whatever a is to whatever f returns?

Does f accept whatever b and c are?

Scope questions Type questions

Scope
What names are visible?

Names Bindings Objects

Obj 1

Obj 2

Obj 3

Obj 4

Name1

Name2

Name3

Name4

Scope

Scope: where/when a name is bound to an object

Useful for modularity: want to keep most things hidden

Scoping Visible Names Depend On
Policy

Static Textual structure of program
Dynamic Run-time behavior of program

Basic Static Scope in C, C++, Java, etc.

A name begins life where it is
declared and ends at the end
of its block.

From the CLRM, “The scope
of an identifier declared at
the head of a block begins at
the end of its declarator, and
persists to the end of the
block.”

void foo()
{

int x;

}

Hiding a Definition

Nested scopes can hide earlier
definitions, giving a hole.

From the CLRM, “If an
identifier is explicitly declared
at the head of a block,
including the block
constituting a function, any
declaration of the identifier
outside the block is
suspended until the end of
the block.”

void foo()
{

int x;

while (a < 10) {
int x;

}

}

Static vs. Dynamic Scope

C

int a = 0;

int foo() {
return a + 1;

}

int bar() {
int a = 10;

return foo();
}

OCaml

let a = 0 in
let foo x = a + 1 in
let bar =
let a = 10 in
foo 0

Bash

a=0

foo ()
{

a=‘expr $a + 1‘
}

bar ()
{

local a=10
foo
echo $a

}

bar

Basic Static Scope in O’Caml

A name is bound after the
“in” clause of a “let.” If the
name is re-bound, the
binding takes effect after the
“in.”

let x = 8 in

let x = x + 1 in

Returns the pair (12, 8):
let x = 8 in

(let x = x + 2 in
x + 2),

x

Let Rec in O’Caml

The “rec” keyword makes a
name visible to its definition.
This only makes sense for
functions.

let rec fib i =
if i < 1 then 1 else

fib (i-1) + fib (i-2)
in

fib 5

(* Nonsensical *)
let rec x = x + 3 in

Let...and in O’Caml

Let...and lets you bind
multiple names at once.
Definitions are not mutually
visible unless marked “rec.”

let x = 8
and y = 9 in

let rec fac n =
if n < 2 then

1
else

n * fac1 n
and fac1 n = fac (n - 1)
in
fac 5

Forward Declarations

Languages such as C, C++, and Pascal require forward
declarations for mutually-recursive references.

int foo(void);
int bar() { ... foo(); ... }
int foo() { ... bar(); ... }

Partial side-effect of compiler implementations. Allows
single-pass compilation.

Nesting Function Definitions

let articles words =

let report w =

let count = List.length
(List.filter ((=) w) words)

in w ^ ": " ^
string_of_int count

in String.concat ", "
(List.map report ["a"; "the"])

in articles
["the"; "plt"; "class"; "is";
"a"; "pain"; "in";
"the"; "butt"]

let count words w = List.length
(List.filter ((=) w) words) in

let report words w = w ^ ": " ^
string_of_int (count words w) in

let articles words =
String.concat ", "
(List.map (report words)
["a"; "the"]) in

articles
["the"; "plt"; "class"; "is";
"a"; "pain"; "in";
"the"; "butt"]

Produces “a: 1, the: 2”

Dynamic Definitions in TEX

% \x, \y undefined
{
% \x, \y undefined
\def \x 1
% \x defined, \y undefined

\ifnum \a < 5
\def \y 2

\fi

% \x defined, \y may be undefined
}
% \x, \y undefined

Static vs. Dynamic Scope

Most modern languages use static scoping.

Easier to understand, harder to break programs.

Advantage of dynamic scoping: ability to change
environment.

A way to surreptitiously pass additional parameters.

Application of Dynamic Scoping

program messages;
var message : string;

procedure complain;
begin

writeln(message);
end

procedure problem1;
var message : string;
begin

message := ’Out of memory’;
complain

end

procedure problem2;
var message : string;
begin

message := ’Out of time’;
complain

end

Open vs. Closed Scopes

An open scope begins life including the symbols in its outer
scope.

Example: blocks in Java

{
int x;
for (;;) {
/* x visible here */

}
}

A closed scope begins life devoid of symbols.

Example: structures in C.

struct foo {
int x;
float y;

}

Types
What operations are allowed?

Types

A restriction on the possible interpretations of a segment of
memory or other program construct.

Two uses:

Safety: avoids data being treated
as something it isn’t

Optimization: eliminates certain
runtime decisions

Types in C
What types are processors best at?

Basic C Types

C was designed for efficiency: basic types are whatever is
most efficient for the target processor.

On an (32-bit) ARM processor,

char c; /* 8-bit binary */

short d; /* 16-bit two’s-complement binary */
unsigned short d; /* 16-bit binary */

int a; /* 32-bit two’s-complement binary */
unsigned int b; /* 32-bit binary */

float f; /* 32-bit IEEE 754 floating-point */
double g; /* 64-bit IEEE 754 floating-point */

Pointers and Arrays

A pointer contains a memory address.

Arrays in C are implemented with arithmetic on pointers.

A pointer can create an alias to a variable:

int a;
int *b = &a; /* "pointer to integer b is the address of a" */
int *c = &a; /* c also points to a */

b = 5; / sets a to 5 */
c = 42; / sets a to 42 */

printf("%d %d %d\n", a, *b, *c); /* prints 42 42 42 */

a b c

Pointers Enable Pass-by-Reference

void swap(int x, int y)
{
int temp;
temp = x;
x = y;
y = temp;

}

Does this work?

void swap(int *px, int *py)
{
int temp;

temp = *px; /* get data at px */
*px = *py; /* get data at py */
py = temp; / write data at py */

}

void main()
{
int a = 1, b = 2;

/* Pass addresses of a and b */
swap(&a, &b);

/* a = 2 and b = 1 */
}

Pointers Enable Pass-by-Reference

void swap(int x, int y)
{
int temp;
temp = x;
x = y;
y = temp;

}

Does this work?
Nope.

void swap(int *px, int *py)
{
int temp;

temp = *px; /* get data at px */
*px = *py; /* get data at py */
py = temp; / write data at py */

}

void main()
{
int a = 1, b = 2;

/* Pass addresses of a and b */
swap(&a, &b);

/* a = 2 and b = 1 */
}

Arrays and Pointers

a: a[0]a[1] a[5] a[9]

int a[10];

int *pa = &a[0];
pa = pa + 1;
pa = &a[1];
pa = a + 5;

a[i] is equivalent to *(a + i)

Arrays and Pointers

a: a[0]a[1] a[5] a[9]

pa:

int a[10];
int *pa = &a[0];

pa = pa + 1;
pa = &a[1];
pa = a + 5;

a[i] is equivalent to *(a + i)

Arrays and Pointers

a: a[0]a[1] a[5] a[9]

pa:

int a[10];
int *pa = &a[0];
pa = pa + 1;

pa = &a[1];
pa = a + 5;

a[i] is equivalent to *(a + i)

Arrays and Pointers

a: a[0]a[1] a[5] a[9]

pa:

int a[10];
int *pa = &a[0];
pa = pa + 1;
pa = &a[1];

pa = a + 5;

a[i] is equivalent to *(a + i)

Arrays and Pointers

a: a[0]a[1] a[5] a[9]

pa:

int a[10];
int *pa = &a[0];
pa = pa + 1;
pa = &a[1];
pa = a + 5;

a[i] is equivalent to *(a + i)

Multi-Dimensional Arrays

int monthdays[2][12] = {
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } };

monthdays[i][j] is at address monthdays + 12 * i + j

Structures

Structures: each field has own storage
struct box {

int x, y, h, w;
char *name;

};

Unions: fields share same memory
union token {
int i;
double d;
char *s;

};

Structs

Structs can be used like the objects of C++, Java, et al.

Group and restrict what can be stored in an object, but not
what operations they permit.

struct poly { ... };

struct poly *poly_create();
void poly_destroy(struct poly *p);
void poly_draw(struct poly *p);
void poly_move(struct poly *p, int x, int y);
int poly_area(struct poly *p);

Unions: Variant Records

A struct holds all of its fields at once. A union holds only
one of its fields at any time (the last written).

union token {
int i;
float f;
char *string;

};

union token t;
t.i = 10;
t.f = 3.14159; /* overwrite t.i */
char *s = t.string; /* return gibberish */

Kind of like a bathroom on an airplane

Applications of Variant Records

A primitive form of polymorphism:

struct poly {
int type;
int x, y;
union { int radius;

int size;
float angle; } d;

};

void draw(struct poly *shape)
{
switch (shape->type) {
case CIRCLE: /* use shape->d.radius */

case SQUARE: /* use shape->d.size */

case LINE: /* use shape->d.angle */

}

}

Name vs. Structural Equivalence

struct f {
int x, y;

} foo = { 0, 1 };

struct b {
int x, y;

} bar;

bar = foo;

Is this legal in C? Should it be?

C’s Declarations and Declarators

Declaration: list of specifiers followed by a
comma-separated list of declarators.

static unsigned

basic type︷︸︸︷
int︸ ︷︷ ︸

specifiers

(*f[10])(int, char*);︸ ︷︷ ︸
declarator

Declarator’s notation matches that of an expression: use it
to return the basic type.

Largely regarded as the worst syntactic aspect of C: both
pre- (pointers) and post-fix operators (arrays, functions).

Types of Type Systems
What kinds of type systems do languages have?

Strongly-typed Languages

Strongly-typed: no run-time type clashes (detected or not).

C is definitely not strongly-typed:

float g;

union { float f; int i } u;

u.i = 3;

g = u.f + 3.14159; /* u.f is meaningless */

Is Java strongly-typed?

Statically-Typed Languages

Statically-typed: compiler can determine types.

Dynamically-typed: types determined at run time.

Is Java statically-typed?

class Foo {
public void x() { ... }

}

class Bar extends Foo {
public void x() { ... }

}

void baz(Foo f) {
f.x();

}

Polymorphism

Say you write a sort routine:

void sort(int a[], int n)
{
int i, j;
for (i = 0 ; i < n-1 ; i++)
for (j = i + 1 ; j < n ; j++)

if (a[j] < a[i]) {
int tmp = a[i];
a[i] = a[j];
a[j] = tmp;

}
}

Polymorphism

To sort doubles, only need
to change two types:

void sort(double a[], int n)
{
int i, j;
for (i = 0 ; i < n-1 ; i++)
for (j = i + 1 ; j < n ; j++)

if (a[j] < a[i]) {
double tmp = a[i];
a[i] = a[j];
a[j] = tmp;

}
}

C++ Templates

template <class T> void sort(T a[], int n)
{
int i, j;
for (i = 0 ; i < n-1 ; i++)
for (j = i + 1 ; j < n ; j++)

if (a[j] < a[i]) {
T tmp = a[i];
a[i] = a[j];
a[j] = tmp;

}
}

int a[10];

sort<int>(a, 10);

C++ Templates

C++ templates are essentially language-aware macros. Each
instance generates a different refinement of the same code.

sort<int>(a, 10);

sort<double>(b, 30);

sort<char *>(c, 20);

Fast code, but lots of it.

Faking Polymorphism with Objects

class Sortable {
bool lessthan(Sortable s) = 0;

}

void sort(Sortable a[], int n) {
int i, j;
for (i = 0 ; i < n-1 ; i++)
for (j = i + 1 ; j < n ; j++)

if (a[j].lessthan(a[i])) {
Sortable tmp = a[i];
a[i] = a[j];
a[j] = tmp;

}
}

Faking Polymorphism with Objects

This sort works with any array of objects derived from
Sortable.

Same code is used for every type of object.

Types resolved at run-time (dynamic method dispatch).

Does not run as quickly as the C++ template version.

Parametric Polymorphism

In C++,

template <typename T>
T max(T x, T y)
{
return x > y ? x : y;

}

struct foo {int a;} f1, f2, f3;

int main()
{
int a = max<int>(3, 4); /* OK */
f3 = max<struct foo>(f1, f2); /* No match for operator> */

}

The max function only operates with types for which the >
operator is defined.

Parametric Polymorphism
In OCaml,

let max x y = if x - y > 0 then x else y

max : int -> int -> int

Only int arguments are allowed because in OCaml, - only
operates on integers.

However,

let rec map f = function [] -> [] | x::xs -> f x :: map f xs

map : (’a -> ’b) -> ’a list -> ’b list

Here, ’a and ’b may each be any type.

OCaml uses parametric polymorphism: type variables may
be of any type.

C++’s template-based polymorphism is ad hoc: there are
implicit constraints on type parameters.

Overloading
What if there is more than one object for a name?

Overloading versus Aliases

Overloading: two objects, one name

Alias: one object, two names

In C++,

int foo(int x) { ... }
int foo(float x) { ... } // foo overloaded

void bar()
{
int x, *y;
y = &x; // Two names for x: x and *y

}

Examples of Overloading

Most languages overload arithmetic operators:

1 + 2 // Integer operation
3.1415 + 3e-4 // Floating-point operation

Resolved by checking the type of the operands.

Context must provide enough hints to resolve the
ambiguity.

Function Name Overloading

C++ and Java allow functions/methods to be overloaded.

int foo();
int foo(int a); // OK: different # of args
float foo(); // Error: only return type
int foo(float a); // OK: different arg types

Useful when doing the same thing many different ways:

int add(int a, int b);
float add(float a, float b);

void print(int a);
void print(float a);
void print(char *s);

Function Overloading in C++

Complex rules because of promotions:

int i;
long int l;
l + i

Integer promoted to long integer to do addition.

3.14159 + 2

Integer is promoted to double; addition is done as double.

Function Overloading in C++

1. Match trying trivial conversions
int a[] to int *a, T to const T, etc.

2. Match trying promotions
bool to int, float to double, etc.

3. Match using standard conversions
int to double, double to int

4. Match using user-defined conversions
operator int() const { return v; }

5. Match using the elipsis ...

Two matches at the same (lowest) level is ambiguous.

Binding Time
When are bindings created and destroyed?

Binding Time

When a name is connected to an object.

Bound when Examples

language designed if else
language implemented data widths
Program written foo bar
compiled static addresses, code
linked relative addresses
loaded shared objects
run heap-allocated objects

Binding Time and Efficiency

Earlier binding time ⇒ more efficiency, less flexibility

Compiled code more efficient than interpreted because
most decisions about what to execute made beforehand.

switch (statement) {

case add:
r = a + b;
break;

case sub:
r = a - b;
break;

/* ... */
}

add %o1, %o2, %o3

Binding Time and Efficiency

Dynamic method dispatch in OO languages:

class Box : Shape {
public void draw() { ... }

}

class Circle : Shape {
public void draw() { ... }

}

Shape s;
s.draw(); /* Bound at run time */

Binding Time and Efficiency

Interpreters better if language has the ability to create new
programs on-the-fly.

Example: Ousterhout’s Tcl language.

Scripting language originally interpreted, later
byte-compiled.

Everything’s a string.

set a 1
set b 2
puts "$a + $b = [expr $a + $b]"

Binding Time and Efficiency

Tcl’s eval runs its argument as a command.

Can be used to build new control structures.

proc ifforall {list pred ifstmt} {
foreach i $list {
if [expr $pred] { eval $ifstmt }

}
}

ifforall {0 1 2} {$i % 2 == 0} {
puts "$i even"

}

0 even
2 even

Static Semantic Analysis
How do we validate names, scope, and types?

Static Semantic Analysis

Lexical analysis: Each token is valid?

if i 3 "This" /* valid Java tokens */
#a1123 /* not a token */

Syntactic analysis: Tokens appear in the correct order?

for (i = 1 ; i < 5 ; i++) 3 + "foo"; /* valid Java syntax */
for break /* invalid syntax */

Semantic analysis: Names used correctly? Types consistent?

int v = 42 + 13; /* valid in Java (if v is new) */
return f + f(3); /* invalid */

What To Check

Examples from Java:

Verify names are defined and are of the right type.

int i = 5;
int a = z; /* Error: cannot find symbol */
int b = i[3]; /* Error: array required, but int found */

Verify the type of each expression is consistent.

int j = i + 53;
int k = 3 + "hello"; /* Error: incompatible types */
int l = k(42); /* Error: k is not a method */
if ("Hello") return 5; /* Error: incompatible types */
String s = "Hello";
int m = s; /* Error: incompatible types */

How To Check Expressions: Depth-first AST Walk

Checking function: environment → node → type

1 - 5

-

1 5

check(−)
check(1) = int
check(5) = int
Success: int − int = int

1 + "Hello"

+

1 "Hello"

check(+)
check(1) = int
check("Hello") = string
FAIL: Can’t add int and string

Ask yourself: at each kind of node, what must be true
about the nodes below it? What is the type of the node?

How To Check: Symbols
Checking function: environment → node → type

1 + a

+

1 a

check(+)
check(1) = int
check(a) = int
Success: int + int = int

The key operation: determining the type of a symbol when
it is encountered.

The environment provides a “symbol table” that holds
information about each in-scope symbol.

A Static Semantic Checking Function
A big function: “check: ast → sast”

Converts a raw AST to a “semantically checked AST”

Names and types resolved

AST:

type expression =
IntConst of int

| Id of string
| Call of string * expression list
| ...

⇓

SAST:

type expr_detail =
IntConst of int

| Id of variable_decl
| Call of function_decl * expression list
| ...

type expression = expr_detail * Type.t

The Type of Types

Need an OCaml type to represent the type of something in
your language.

An example for a language with integer, structures, arrays,
and exceptions:

type t = (* can’t call it "type" since that’s reserved *)
Void

| Int
| Struct of string * ((string * t) array) (* name, fields *)
| Array of t * int (* type, size *)
| Exception of string

Translation Environments

Whether an expression/statement/function is correct
depends on its context. Represent this as an object with
named fields since you will invariably have to extend it.

An environment type for a C-like language:

type translation_environment = {
scope : symbol_table; (* symbol table for vars *)

return_type : Types.t; (* Function’s return type *)
in_switch : bool; (* if we are in a switch stmt *)
case_labels : Big_int.big_int list ref; (* known case labels *)
break_label : label option; (* when break makes sense *)
continue_label : label option; (* when continue makes sense *)
exception_scope : exception_scope; (* sym tab for exceptions *)
labels : label list ref; (* labels on statements *)
forward_gotos : label list ref; (* forward goto destinations *)

}

A Symbol Table

Basic operation is string → type. Map or hash could do this,
but a list is fine.

type symbol_table = {
parent : symbol_table option;
variables : variable_decl list

}

let rec find_variable (scope : symbol_table) name =
try

List.find (fun (s, _, _, _) -> s = name) scope.variables
with Not_found ->

match scope.parent with
Some(parent) -> find_variable parent name

| _ -> raise Not_found

Checking Expressions: Literals and Identifiers

(* Information about where we are *)
type translation_environment = {

scope : symbol_table;
}

let rec expr env = function

(* An integer constant: convert and return Int type *)
Ast.IntConst(v) -> Sast.IntConst(v), Types.Int

(* An identifier: verify it is in scope and return its type *)
| Ast.Id(vname) ->

let vdecl = try
find_variable env.scope vname (* locate a variable by name *)

with Not_found ->
raise (Error("undeclared identifier " ^ vname))

in
let (_, typ) = vdecl in (* get the variable’s type *)
Sast.Id(vdecl), typ

| ...

Checking Expressions: Binary Operators

(* let rec expr env = function *)

| A.BinOp(e1, op, e2) ->
let e1 = expr env e1 (* Check left and right children *)
and e2 = expr env e2 in

let _, t1 = e1 (* Get the type of each child *)
and _, t2 = e2 in

if op <> Ast.Equal && op <> Ast.NotEqual then
(* Most operators require both left and right to be integer *)
(require_integer e1 "Left operand must be integer";
require_integer e2 "Right operand must be integer")

else
if not (weak_eq_type t1 t2) then
(* Equality operators just require types to be "close" *)
error ("Type mismatch in comparison: left is " ^

Printer.string_of_sast_type t1 ^ "\" right is \"" ^
Printer.string_of_sast_type t2 ^ "\""
) loc;

Sast.BinOp(e1, op, e2), Types.Int (* Success: result is int *)

Checking Statements: Expressions, If

let rec stmt env = function

(* Expression statement: just check the expression *)
Ast.Expression(e) -> Sast.Expression(expr env e)

(* If statement: verify the predicate is integer *)
| Ast.If(e, s1, s2) ->

let e = check_expr env e in (* Check the predicate *)
require_integer e "Predicate of if must be integer";

Sast.If(e, stmt env s1, stmt env s2) (* Check then, else *)

Checking Statements: Declarations

(* let rec stmt env = function *)

| A.Local(vdecl) ->
let decl, (init, _) = check_local vdecl (* already declared? *)
in

(* side-effect: add variable to the environment *)
env.scope.S.variables <- decl :: env.scope.S.variables;

init (* initialization statements, if any *)

Checking Statements: Blocks

(* let rec stmt env = function *)

| A.Block(sl) ->

(* New scopes: parent is the existing scope, start out empty *)

let scope’ = { S.parent = Some(env.scope); S.variables = [] }
and exceptions’ =
{ excep_parent = Some(env.exception_scope); exceptions = [] }

in

(* New environment: same, but with new symbol tables *)
let env’ = { env with scope = scope’;

exception_scope = exceptions’ } in

(* Check all the statements in the block *)

let sl = List.map (fun s -> stmt env’ s) sl in
scope’.S.variables <-

List.rev scope’.S.variables; (* side-effect *)

Sast.Block(scope’, sl) (* Success: return block with symbols *)

	Scope
	Types
	Types in C
	Types of Type Systems
	Overloading
	Binding Time
	Static Semantic Analysis

