The simpliCty Compiler

Course: COMS 4115
Professor: Dr. Stephen A. Edwards
TA: Graham Gobieski
Date: Thursday August 11, 2016

Alphabetical Author List:
- Rui Gu, rg2970
- Adam Hadar, anh2130
- Zachary Moffitt, znm2104
- Suzanna Schmeelk, ss4648

Table of Contents

1. Introduction (by Team)

1.1 C Grammar Subset

1.2 Compiler Implementation

2. Language Tutorial (by Team)

2.1. Source Code Tutorial

2.2. Source Code Examples
2.2.1. Example: Hello World
2.2.1.1. Hello World with Chars
2.2.1.1. Hello World with Arrays
2.2.1.1. Hello World with Strings
2.2.2. Example: Fibonacci.sct

3. Language Reference Manual

3.1 Lexical Conventions
3.1.1. Identifiers
3.1.2. Comments
3.1.3. Whitespace
3.1.4. Keywords

3.2. Constants
3.2.1. Integer constants

3.2.2. Character constants

3.2.3. Floating constants

3.2.4. Strings
3.3. Objects, types, and conversion

3.3.1. Fundamental types

3.3.2. Derived types

3.3.3. ‘lvalues’
3.3.4. Casting and Conversions

3.4. Expressions

3.4.1. Syntax notation

20f74

3of 74

3.4.2. Primary expressions

3.4.3. Unary operators

3.4.5. Multiplicative operators
3.4.6. Additive operators

3.4.7. Relational operators

3.4.8. Equality operators

3.4.9. Comparison operators

3.4.10. Assignment operators

3.5. Declarations

3.5.1. Type specifiers

3.5.2. Declarators

3.5.3. Structure Declarations
3.6. Statements

3.6.1. Expression statement

3.6.2. Compound statement

3.6.3. Conditional statement
3.6.4. While statement
3.6.5. For statement

3.6.6. Break statement
3.6.5. Continue statement

3.6.8. Return statement

3.6.9. Putchar statement
3.6.10. Getchar statement

3.7. Program definitions

3.7.1. Function definition
3.7.2. Structure definition

3.8. Scope and Preprocessor Rules

3.8.1. File inclusion

3.9. Context Free Grammar Summary

3.9.1. Expressions

3.9.2. Declarations
3.9.3. Statements

3.9.4. Function Definitions

3.9.5. Preprocessor

4. Project Plan (by Manager)

4.1. Process: Planning. Specification, Development and Testing

4.1.1 Project Planning

4.1.2 Project Specification

4.1.3 Project Testing
4.2. One-page Programming Style Guide used by the Team

4.3. Project timeline

4.4. Team Member Roles and Responsibilities
4.4.1. Adam Hadar, anh2130
4.4.2. Zachary Moffitt, znm2104
4.4.3. Suzanna Schmeelk, ss4648
4.4.4. Rui Gu, rg2970

4.5. Software Development Environment

4.5.1. Software Development Tools
4.5.1.1.Version Control System: GitHub
4.5.1.2. Docker

4.5.2. Software Development Languages
4.5.2.1. OCaml
4.5.2.2. LLVM: Low Level Virtual Machine
4.5.2.3. Bash Scripts for Regression Testing

4.6. Project Log (Asana)

5. Language Evolution (by Guru)

5.1. Phase 1: Proposal Commitments

5.2. Phase 2: Language Reference Enhancements

5.3. Phase 3: Final Enhancements

6. Translator Architectural Design (by Sys. Architect)

6.1. Block Diagram of the Major Components of our Compiler

6.2. Interfaces between the components

6.3. Who implemented each component
7. Test Plan and Scripts (by Tester)

7.1. Source to Target Examples

7.1.1. Example 1: Tic Tac Toe

7.1.2. Example 2: Extern Functions

7.1.3. Example 3: test-float-mixed.sct

7.1.4. Example 4: Test-struct4.sct

7.1.5. Example 5: Break Statements

7.1.5. Example 5: Continue Statements
7.2. Test Suites

7.2.1. Why and How these Test Cases were Chosen

7.2.2. Type of Automation Used In Testing
7.2.3. Who Did What in Testing
8. Lessons Learned (by Team)

4 of 74

50f 74

8.1. Rui Gu, rg2970
8.2. Adam Hadar, anh2130
8.3. Zachary Moffitt, znm2104
8.4. Suzanna Schmeelk, ss4648
9. Appendix - Full Code Listing (by Team)

9.1 Main file (simplicty.ml)

9.2 Scanner

9.2. Parser

9.4. AST

9.5. Semantic Checking
9.6. CodeGen

9.7 GitLog
10. Appendix - Asana Project Log

1. Introduction (by Team)

The simpliCty language is a simplified version of C, which contains a subset of C grammar with a strict type
system and uses LLVM as the backend to produce bytecode. One of the major distinctions SimpliCty has
from ANSI C is that pointers are not supported in the front end. Our language operates best with programs
that need to be Turing complete and can be defined using strict type casting and only stack-based memory
management, which decreases runtime errors. The C language domain is for number crunching and
embedded systems. Our programs will operate in the same domain as C with the exception that our
compiler supports only a limited features of C. The following sub-sections further explain the main points of
our compiler.

1.1 C Grammar Subset

Primitive types are supported (i.e., int, float, bool, char). Types implicitly cast up (bool to int, char to int, int to
float), but casting down is not supported. Structs and multidimensional arrays are supported (but structs
cannot contain structs). Our compiler supports C control-flow statements: ‘while’, ‘for’, ‘if-else’, ‘return’,
‘break’, and ‘continue.” Function calls and recursion are supported. Nested functions are not allowed. The
language supports both globally scoped variables, and locally (within a function) scoped variables. The

language implements memory on the stack, and does not support heap memory allocations.

6 of 74

1.2 Compiler Implementation

We built our own compiler frontend using OCaml. The generated AST will be hooked with LLVM APIs to
construction LLVM IR. We then utilize LLVM to generate machine dependent assembly code. The compiler
solely relies on the stack for memory management. Variables exist only within the scope of the function
where the variables are created which requires the developer to handle the return value. If a variable is
declared without a value assigned to it, is is assigned the value zero. By definition; when the function ends,

all the allocated memory will be reclaimed.

2. Language Tutorial (by Team)

This section explains how to use our language. First we give a short explanation for our language and then

we provide some example programs.

2.1. Source Code Tutorial

SimpliCty is wildly similar to C, in that a program is made up of definitions of either functions or variables.
The first function run after compilation is the function called “main” in the program. Function can be “called”
within other functions, and this is actually the only way the a function other than main will process its code.
Variables are declared so the user can write programs that modify the values of those variables in order to
reach some end goal.

Functions are declared by specifying the type (if any) that they return, the set of inputs (if any) that the
function requires to run, and the set of instructions that are processed when the function is called. The main
function can return an input, but its value will be ignored by the computer.

Variables are declared by specifying their type, name, and an optional initial value. Variables that are
defined within a function can only be accessed within that same function (no other function can read or
modify their values) unless they are passed as parameters to other functions. Parameters are normally
passed by value to other functions, which means that a copy of that variable is generated for that function.
Arrays can be either passed by value (a copy is generated), or passed by reference (the original array will

be accessed).

2.2. Source Code Examples

This source code examples show features of our language.

2.2.1. Example: Hello World

The following three examples are three different ways to print “Hello World.” Example 1

7 of 74

2.2.1.1. Hello World with Chars

void main () /* control flow always begins at main() */
{

— \hl;

= \el;

— ‘l’;

\Ol;

e 4

char
char
char
char
char
char
char
char =
char n =
putchar (h
putchar (e
putchar (1
putchar (1
putchar (o
putchar (s
(w
(o
(r
(1
(d
(n

= ‘w’;
= ‘p/.
r
\d’ .
’
‘\H';

O R = n OO DS
Il

’
’

’

’

)
)
)
)
);
):
).
)
)
)
)
)

putchar g
putchar
putchar
putchar
putchar
putchar

return;

’

’

’

’

’

Output:
> ./simplicty helloworldl.sct
hello world

>
2.2.1.1. Hello World with Arrays
int main ()
{
char[lZ] hello = {‘\hl,lelllllllllllolll I,IWI,IOI,IrI,IlI,IdI,I\n!|};
int i;
for(i = 0; 1 < 12; i++)
{
putchar (hello[i]);
}
return 0;
}
Output:

> ./simplicty helloworld2.sct
hello world
>

2.2.1.1. Hello World with Strings

8 of 74

void prints(string str)
{
int ptr;
while (str[ptr] != ‘\0’)
putchar (strptrt++]);
putchar (*\n’) ;
return;

int main ()
string hello = “hello world”;

prints (hello) ;
return 0;

Output:

> ./simplicty helloworld3.sct
hello world

>

2.2.2. Example: Fibonacci.sct

9 of 74

extern prints(string s);
extern printi(int 1i);
int main ()
{
int n;
int first = 0;
int second = 1;
int next;
int c;
string inputReq = “Enter number of terms:”;
prints (inputReq) ;
n = getchar();
prints (“The first”);
printi(n);
prints (”“terms of Fibonacci:”);
printi (first);
printi (second) ;

for (i = 0; i < n; i++)

{
next = first + second;
first = second;

second = next;
printi (next);
t

return 0;

/*

/*

includes a way to print vars */
control flow begins at main */

must init var on separate lines */

Output:

>8

8

V B2 0 Ul wbN - = O

> ./simplicty fibonacci.sct > fib.1l1l
> 111 fib.11
Enter number of terms:

The first

terms of Fibonacci:

10 of 74

3. Language Reference Manual

The simpliCity language is a simplified version of C which was developed by Kernighan and Ritchie. The

simpliCity language consists of a subset of C grammar.
3.1 Lexical Conventions

3.1.1. Identifiers

An identifier is any sequence of alphanumeric characters, where the first character must be
alphabetic. The _ character is the only non-alphanumeric symbol accepted in an identifier, and it is

read as an alphabetic character, but it cannot be the first character for an identifier.

3.1.2. Comments

Comments are introduced with the /* character string, and terminate with the */ character string.
All characters within these indicators are ignored. Comments do not nest.

3.1.3. Whitespace

Whitespace is ignored by the compiler; any combination of whitespace characters will be interpreted

as one whitespace character.

3.1.4. Keywords

The following identifier are reserved for various uses, and cannot be used in any other way than

how they are specified (later in this manual):

e int ® main

® char e return

e float ® Dbreak

® string e continue
e Dbool e if

e true e else

e false e while

e void e for

e struct e putchar

11 of 74

® getchar

3.2. Constants

3.2.1. Integer constants

An integer constant is a sequence of digits. It is taken to be a decimal number. It can have a + or -

character preceding it to indicate its sign, but is assumed positive if not specified.

3.2.2. Character constants

A character constant is 1 or 2 characters enclosed in single quotes, * and ’. To represent a single
quote character as a character constant, it must be preceded by a backslash, e.g. \’. The

backslash character is used as an escape for several other special character constants, as shown in

this table:
Backslash AN\
Single quote \’
New line \n
End of string / null byte \O

3.2.3. Floating constants

A floating constant contains an integer part, a fractional part, and an exponent part. The integer part
recognized as a series of decimal numbers. It is followed by either the fractional, exponent part, or
the decimal point (the . character). If the fractional part follows the integer part, the decimal point
must separate them. The fractional part can also be optionally followed by the exponent part. The
exponent part must begin with the alphabetic character e, and is then followed by an optional sign
(+ or -) followed by a series of decimal numbers.

Many of the parts of a floating constant are optional, but there are some specific rules with excluding
parts. The integer part can be written alone, but it must be followed by the decimal point to be
considered a floating constant. The fractional parts can be written alone, but it must be preceded by
the decimal point to be considered a floating constant. If the exponent part is present, either/both of
the integer part and the fractional part must be present. The entire constant may be preceded by (+

or -) to indicate sign, but it is assumed positive if none are present.

3.2.4. Strings

12 of 74

A string is a set of characters surrounded by double quotes, ™ and ”. A string is considered in the
back end as an array of characters, which is held in memory as a contiguous block of data. To
represent the double-quote character within a string, it must be preceded with the escape character
as specified for character constants, e.g. \ ”. The other special characters specified there should be
written in the same method (however the escape sequence for the single quote is not
need/supported for strings).

3.3. Objects, types, and conversion

3.3.1. Fundamental types

SimpliCty supports four fundamental types - integers, characters, single-precision floating-point
numbers, and booleans:
e characters (from here on labelled char), are representative of the ASCII character set; for
stack alignment we transform all char to int.
e integers (int) are 32 bit (4 byte) numbers.
e single-precision numbers (f1oat) are 32 bit (4 byte) numbers represented with 24 bits of
precision, 8 bits for an exponent, and 1 bit for a sign.
e booleans (bool) are 1 bit representations of true or false statements. The reserved
keywords true and false are its two possible values.

3.3.2. Derived types

There are three types which can be constructed from the fundamental types:
e arrays - a set of objects that are all the same type. A string is a type of array (an array of
char) which has the special label string.
e structures - a set of objects that may not be all the same type
e functions - a subroutine that returns an object of a specific type
These derived types are generally recursive. There can be an array of arrays, an array of structures,
a structure of arrays, a structures of structures, and a function can return an array or a structure.

Functions cannot return functions.

3.3.3. ‘Ivalues’

‘Ivalues’ are expressions that refer to objects. An identifier is an Ivalue. When code is being parsed,
expressions like a = bora = 3 will interpret a as being an Ivalue. b is also an Ivalue in this
example.

3.3.4. Casting and Conversions

13 of 74

SimpliCty is a strongly typed language, and so it does very little type conversion. Any attempt to
perform a direct type casting will result in a compiler error. There is built in casting for two
exceptions for this rule to make the mathematical operators work across char, int and float.
The built in casting exception are charto int and int to float. A cast between char and int
and a int and a float does not affect the variable size. They are all represented by a 4-byte

value.

3.4. Expressions

Precedence of expressions is represented in this manual in the order of their section numbers. For example,
all expressions from subsection 3 (unary operators) will always take precedence over any expression in
subsection 4 (multiplicative operators), or subsection 5 (additive operators). It will always be ignored before
expressions from subsection 2 (primary expressions), however.

Expressions defined within the same subsection have undefined precedence over each other. The compiler

will arbitrarily compute them, in whatever order.

3.4.1. Syntax notation

Syntactic categories are indicated by text in the font Cambria, and in italics. Literal words or symbols
are written in Courier New, with a light gray backgroundThe subscript characters

mark a category that is optional.

3.4.2. Primary expressions

Primary expressions group left-to-right.

a. identifier
An identifier is a primary expression, but only if it has been properly declared. Upon
declaration, its type must be specified. However, if the type of the identifier is “array of type
T”, then the value of the identifier expression is an internal pointer to the first object in the
array. The user will not be able to manipulate the address directly, as pointers are not
available to be manipulated.

a. constant
Decimal, character, boolean, or floating point constants are all primary expressions. It’'s
type is int for decimal integers, char for character, f1oat for floating point, and boo1l for
boolean.

a. string
A string is a primary expression, whose type is ‘array of char’.

a. (expression)

14 of 74

Parenthesized expressions are primary expressions who would be evaluated identically to
the same expression without parentheses. This is useful to avoid ambiguity in writing
expressions.

a. primary-lvalue [expression]
This expression defines a reference to a specific value within an array. It is a valid primary
expression when the left expression resolves to a variable of type array, and when the right
expression (within brackets) resolves to an int which is not larger than the size of the
array.

a. primary-lvalue . member-of-structure
This expression is a valid primary expression when the Ivalue is referring to a structure, and

the member of the structure referred exists within that structure.

3.4.3. Unary operators

Unary operations group right-to-left.

a. - expression
The “mathematical negation” expression results in the negative of the given expression of
the same type. It only operates on int, char, and float. The output of this operation is
the same type as the inner expression.

a. ! expression
The “logical negation” expression results in true if the expression resolves to 0, and
false if the expression resolves to a non-zero value. It only operates on bool. The output
of this operation is a bool.

a. ++ Ivalue-expression
-— Ivalue-expression
The “precrement” expressions increment or decrement by 1 the object referred to by the
Ivalue, as long as it is of type int or char. The final expression returns this incremented
value, of the same type as the Ivalue object.

a. Ivalue-expression ++
lvalue-expression ——
The “postcrement” expressions operates similarly to “precrement” but they return the value
referred to by the object before the operation occurs.

3.4.5. Multiplicative operators

Both multiplicative operators and the following subsection (additive operators) group left-to-right, in
order to emulate math in common usage.

a. expression * expression

150f 74

The * operator expresses multiplication. Both expressions on either side must be of the
same valid type, int or float. The result of this operation is the same type as its two
operands.

expression / expression

The / operator expresses division. Its type requirements are the same as multiplication.
Note that on int/int division, this operation throws away the remainder to keep its output
int.

expression % expression

The % operator expresses the modulo operation. Its type requirements are the same as the

other multiplicative operators.

3.4.6. Additive operators

a.

expression + expression

The + operator expresses addition. Its type requirements are the same as the multiplicative
operators; both operands must be of the same type (both int, both char, or both float),
and it returns a value of the same type as its operands.

expression — expression

The - operator expresses subtraction. Its type requirements are the same as addition and

the multiplicative operators.

3.4.7. Relational operators

Relational operators (as well as the two following section ‘Equality’ and ‘Comparison’) resolve its

two operands into an output that is a bool. These three sections all group left-to-right.

a.

b
c.
d

expression < expression

expression <= expression

expression >= expression

expression > expression

These operators each evaluate to true if the relation is true, and false otherwise. Both
operands must be of the same type. Types int, char, float, and bool are accepted.

The output of these operations is a bool.

3.4.8. Equality operators

a.
b.

expression == expression
expression | = expression
These operators are equivalent in practice to the relational operators, but they always have

lower precedence.

16 of 74

3.4.9. Comparison operators

SimpliCty does not support bitwise operations. As such, the comparison operators do not need to be
a double character.
a. expression && expression
Returns true if both operands are nonzero, otherwise false. If the first expression
evaluates to false, the second expression is not evaluated. All primitive types are
accepted as operands, but a bool is outputted.
a. expression | | expression
Returns true if both or either operands are nonzero, otherwise false. If the first
expression evaluates to true, the second expression is not evaluated. All primitive types

are accepted as operands, but a bool is outputted.

3.4.10. Assignment operators

Assignment operations group right-to-left. They all require an Ivalue as the left operand. The value
returned is the value that is placed in the object referred to by the Ivalue. The object referred to by
the Ivalue must be declared before it can be assigned.

a. Ivalue = expression
Both the object referred to by the Ivalue, and the evaluated expression, must have the
same type.
lvalue += expression
lvalue —= expression

lvalue *= expression

a o oo

lvalue /= expression

®

lvalue %= expression

The behavior of these four operations resolve to (for example +=) 1lvalue = lvalue +
expression The mathematical operation detailed in the symbol evaluates that operation
on the object referred to by the Ivalue and the expression, and then that value is assigned
to the Ivalue. The types of of the Ivalue and the expression must match, as detailed in
section 4 and 5.

3.5. Declarations

Declarations are used within functions to declare instances of designated type. Declarations have the
following form
declaration:

decl-specifier identifier ;

17 of 74

decl-specifier identifier ;
The declarator list contains all the identifiers waiting to be declared. For decl-specifier, only one specifier is
allowed for each declaration.
decl-specifiers:
type-specifier
type-specifier arr-dimensions

Note that a variable cannot be declared and assigned a value to in the same statement.

3.5.1. Type specifiers

The only types that can be specified are the primitive types, the special character array string,
and data structures.
type-specifier:

int

char

float

bool

string

struct-specifier

3.5.2. Declarators

A declarator is a variable name, and optionally a definition of an array. A declarator list must exist
for all types, except for data structures, where they are optional.
declarator:

identifier

declarator [constant]

(declarator)
Together with the associated type specifiers, each declarator yields an instance of the indicated
type. A declarator with the form of declarator [constant] indicates we are declaring an instance of
array, with size constant. If the type-specifier was string, the size of the array does not need to be
specified. An array may be constructed from one of the primitive types, from a structure, or from

another array (to generate a multidimensional array).

3.5.3. Structure Declarations

A data structure specifies a new composite type, which is composed of one or more primitive types,
array, or other previously specified data structures.
struct-specifier:

struct { type-decl-list }

18 of 74

struct identifier { type-decl-list }
The type-decl-list is a sequence of type declarations for the members of the structure.
type-declaration is just normal declaration with type-specifier and declarator.

As stated above, the declarator list is optional for structure declaration. A structure declaration
can be specified for one or multiple variables in one statement or, alternatively, just the type can be
declared, with variables of that type declared later.

Note that the first instance of the struct specifier, struct { type-decl-list }, requires a
declarator list, while the second does not.

SimpliCty does not allow self-referential structures. The declaration for structures is otherwise
similar to the way one declares a variable. However, the declarations within the type-decl-list should
always have names as well.

type-decl-list:
type-declaration

type-declaration type-decl-list

3.6. Statements

3.6.1. Expression statement

An expression statement has the form:
expression ;

Expression statements are assignments or function calls.

3.6.2. Compound statement

Write multiple expression statements, that will be evaluated one after the other, like this:
{ stat-decl-list }
stat-decl-list will be more clearly defined in the section “Program definitions” but for now it will be
defined as:
stat-decl-list:
statement statement-list

statement

3.6.3. Conditional statement

The two types of conditional statements are:
if (expression) statement

if (expression) statement else statement

19 of 74

If the expression surrounded by parentheses evaluates to true (it must be a bool), then the first

statement is evaluated.
In the second instance of a conditional, the second statement is evaluated if the expression

evaluated to false. Never are both statements evaluated.

3.6.4. While statement

The while statement is expressed as such:

while (expression) statement
The expression is evaluated - if it evaluates to a t rue then the statement is evaluated. The
expression must be a bool. Control flow then jumps back to the expression and re-evaluated. This

process is repeated until the expression evaluates to false.

3.6.5. For statement

The for statement is expressed thusly:

for (expressionl ; expression2 ; expression3) statement
But this statement is equivalent to:

expression1 ;

while (expressionZ2)

{

statement
expression3 ;

}
There must be an expression in each of the three positions.

3.6.6. Break statement

The statement
break;

Makes the latest while or for statement terminate prematurely. Control flow moves to the

statement following the terminated statement.

3.6.5. Continue statement

The statement

continue;
Can only be used on while or for statements, in order to prematurely jump back to the evaluation

of the potentially false expression.

20 of 74

3.6.8. Return statement

The statements

return;

returnexpression ;
Move control flow back to the caller of the function within which these statements have been
expressed. In the first type of statement no value is returned. In the second, the expression must

evaluate to the type specified in the function definition. Returning arrays or structures are defined.

3.6.9. Putchar statement

The statement
putchar (expression) ;
Prints the ASCII representation of the expression to the command line. The expression must resolve

toa charto int. Comes from C.

3.6.10. Getchar statement

The statement
getchar () ;
Pulls the next character types by the user in the command line until the a new line character or null

terminator is received. This statement outputs a char. Comes from C.

3.7. Program definitions

A simpliCty program consists of series of external definitions. An external definition is either a function
definition or a global data structure definition.
program:
external-definition program
external-definition
external-definition:
function-definition

struct-definition

3.7.1. Function definition

A function definition is defined as
function-definition:

type-specifier function-declarator function-body

210of 74

Where the type specifier details what the function returns, the function body details the statements
that will be evaluated when the function is called, and the function declaration
function-declarator:
declarator (parameter-listopt)
main ()
Details the name of the function (declarator), and the series of parameters that are passed to the
function as inputs. The special case of the function declaration, with the keyword main, is used to
define the entry point for control flow, if any. It is equivalent to the “main” function keyword in the
regular C Language. main does not have any argument inputs.
A parameter list is defined as
parameter-list:
identifier , parameter-list
identifier
Since the parameter list is optional, a function does not necessarily need any inputs.
A function body has the form
function-body:
type-decl-list function-statement
function-body:
{ stat-decl-list }
stat-decl-list:
statement-declaration stat-decl-list
statement-declaration
statement-declaration:
statement
declaration
stat-decl-list was earlier defined as only a list of statements. Its full definition allows it to be a list, of
arbitrary length, of either statements or declarations. At least one of the statements in a function
must be a “return” statement, as the function needs to at some point return control flow to its parent
function (or terminate the program).

Once the specially defined function main “returns”, a program terminates.

3.7.2. Structure definition

A struct definition is defined as
struct-definition:

struct-specifier ;

22 of 74

A structure is defined here in the same manner as previously defined in the declarations section,
although it does not allow for the declaration of variables of this new data structure type. A structure
may be defined in this scope when it needs to be defined as an input or a return value for one or
multiple functions. A structure defined within a function will be undefined (as out of scope) once the
function returns control flow.

3.8. Scope and Preprocessor Rules

Variables declared within a function are undefined when the function returns. Structures defined within a
function become undefined when the function returns. If the user wants a structure to be available to more
than one function, it must be defined at the level of other functions (as specified in the previous section,
“Program definitions”).

3.8.1. File inclusion

The source text of a simpliCty program does not need to be all in one file. There are special
preprocessor rules that allow the importing of the contents of an external file at the start of the file,
before compilation.

include “filename”

Where the filename is a relative path to the external file.

3.9. Context Free Grammar Summary

3.9.1. Expressions

expression:
primary
(expression)
- expression
! expression
++ lvalue
—-—Ivalue
lvalue ++

lvalue —-

expression * expression
expression / expression

expression s expression

23 of 74

expression + expression

expression — expression

expression < expression
expression <= expression
expression >= expression

expression > expression

expression == expression

expression | = expression

expression && expression

expression | | expression

lvalue = expression

lvalue += expression
lvalue *= expression
lvalue /= expression

lvalue %= expression

expression # expression
primary:
lvalue
int-constant
float-constant
char-constant
string-constant
lvalue:
identifier
identifier (expression-listopt)
lvalue [expression]
lvalue . lvalue
expression-list:
expression , expression-list

expression

3.9.2. Declarations

declaration:

24 of 74

type-specifier varname-list

struct-specifier varname-list
type-specifier:

int

char

float

bool

string

struct identifier
struct-specifier:

struct { declaration-list }

struct identifier { declaration-list }
varname-list:

varname , varname-list

varname
varname:

identifier

(varname)

varname [int-constant]
declaration-list:

declaration ; declaration-list

declaration ;

3.9.3. Statements

statement:
expression ;
declaration
{ statement-list }
if (expression) statement
if (expression) statement else statement
while (expression) statement
for (expression ; expression ; expression) statement
break;
continue;
return;
returnexpression ;
print expression ;

scan;

statement-list:
statement statement-list

statement

3.9.4. Function Definitions

program:
module-definition program
module-definition

module-definition:
function-definition
struct-definition

function-definition:

type-specifier identifier (parameter-list,

parameter-list:
parameter , parameter-list
parameter
parameter:
type-specifier identifier
type-specifier identifier []
struct-definition:

struct-specifier ;

3.9.5. Preprocessor

extern " filename”

4. Project Plan (by Manager)

25 of 74

4.1. Process: Planning, Specification, Development and Testing

We spent an intensive four weeks implementing the compiler.

4.1.1 Project Planning

We spent many hours on project planning. First, the team and the project manager went through the LRM

and divided-up the compiler features and subfeatures in Asana. We chose Asana (https://asana.com/) as

the project management tool becuase of its distributed framework, deadline and notification system and

https://asana.com/

26 of 74

excell spreadsheet export features. The screenshot below shows our Asana projects (both compiler and
final write-up).

MY TASKS MY INBOX @ Search
e R List
simpliCty —
< * 55 & 0 (+ =
- Add Task ‘ View: All Tasks ¥

Proposal: hitp:
~sedwards/cl 2016/4115-summe

‘proposals/simpliCty.pdf

m

Course Deadlines:

STATUS

Zachary Moffitt Jui 23 L J

All good so far.

Final Exam Today Spm

Final Demo simpliCty Tomomow Sprr
Final Report simpliCty Tomamow Sprm

Team Meetings:

4.1.2 Project Specification

We used Asana to divide the project up into specification

New Premium feature: Task Dependencies

Learn more X
Asana Premium lets you mark a task as waiting on ancther. You'll get notified when the task is ready to start.

‘s ASANA X MY TASKS MY INBOX @ Search

moffitt de
77 simpliCty: Compiler ~ @@QQ_
sumphcty List Conversstions Calendar Progress Files Shared with simpliCty
A g Pes =
WS Wi Al Hewiloop DESCRIPTION
GitHub: htf)
P(Gpﬂ;é\' h
~sedwards/cl mmer

New Binary math operations:

New Unary operations:
STATUS
[Zachary Moffitt 11 23 o
’J.- All good so far.
[Migdral s updates
New assignments: E
] é ‘J,
:*

4.1.3 Project Testing

We ran regression tests with over 150 test cases. Our regression testing keeps track of the number of tests
run and the number of tests that passed as well as failed.

27 of 74

4.2. One-page Programming Style Guide used by the Team

We followed the programming style used by the standard OCaml libraries. We used the following

series of styles throughout the writing of our compiler.

1.
2.

First, we used meaningful names.

Second, we used standard indententing for both long expressions as well as match
expressions.

Third, we placed comments above the code in critical regions to enhance understanding.
Fourth, we completed all pattern matching expressions. This would be identified by the
OCaml compiler if we left out any expressions.

Fifth, we tried hard to compress our code as to not to break expressions over multiple lines.
Sixth, to our knowledge, we did not rewrite any standard OCaml library functions and were
careful to (re)use applicable standard OCaml library functions.

Seventh, to our knowledge, we did not compute any values twice and worked hard to

ensure that the our implementation was devoid of repetition.

We followed the naming convention style used by the standard OCaml libraries when writing tokens

to indicate certain meanings. The table below summarizes our token style used throughout the compiler.

Token OCaml Convention Example

Variables *First letter lower case. a_var
*CamelCase or underscore multiwords.

Constructors *First letter upper case. Abs
*Underscores between multiwords

Types *Entirely lower case. member_list
*Underscores between multiwords.

Signatures *Entirely upper case. ABC_DEF
*Underscores between multiwords.

Structures *First letter upper case. Abstract
*CamelCase for multiwords.

Functors *First letter upper case Function
*CamelCase for multiwords.
*Fn completes name.

28 of 74

4.3. Project timeline

We started writing the compiler July 19 and completed the compiler on August 11. The table below
indicates the milestones of our project.

In the table below, the days of the week are indicated as Monday (M), Tuesday (T), Wednesday
(W), Thursday (R), Friday (F), Saturday (S) and Sunday (Z).

Date Milestone

July

11 (M) Proposal Due due to TA

17 (2) Environment set-up (e.g. Amazon, Docker, Asana, and GIT)

19 (T) Begin work on scanner, parser and abstract syntax tree

20 (W) Language Reference Manual (LRM) due to TA

29 (W) In addition to the basic C statement functionality. Adam and Suzanna had 1-dimensional

arrays working; Zac and Rui implemented getchar.

28 (R) “Hello World” demo to TA

31 (S) Suzanna implemented break and continue statements

August

1 (M) “Hello World” program compiled

3 (W) Rui added putchar, Suzanna added char, Zach improved char, Adam working on Arrays

and Suzanna implemented the regression test suite and scripts.

5(R) Rui implemented extern function references

6 (F) Suzanna added float variables and respective binary operations

8 (2) Suzanna implemented casting

11 (R) Adam added multi-dimensional arrays and Rui, Suzanna and Zac added struct
declarations

11 (R) Demo to Dr. Stephen A. Edwards

29 of 74

4.4. Team Member Roles and Responsibilities

Because of the compressed class, everyone had to wear multiple-hats. Our Git had over
committs in total over 4 weeks. We estimated that we spent ____ hours in total on the project. That said we

each owned certain tasks which may have been integrated or extended by another team member.

4.4.1. Adam Hadar, anh2130

| was the lead language guru, and did much of the backend code generation. | managed the group in
defining what we wanted the language to do/look like. | took the lead in writing up the Language Reference
Manual. My other major roles were in implementing the modulo operator, the crement operators, and the

*

mathematical assignment operators (+=, *=, etc). Finally, | did all the back-end code generation for arrays.
This included: allocating memory for an array and storing its pointer in the symbol table, accessing elements
within the array, creating the literal array (marking values with {| and |} generates an array literal). | also
handled passing arrays to functions, where you could specify a static size and pass by value, or not specify
the size and pass by pointer. | attempted to implement multidimensional arrays, but was stressed for time
and only implemented up to two dimensional arrays. Time constraints also kept me from passing back

arrays from functions. | also wrote the standard library functions.

4.4.2. Zachary Moffitt, znm2104

| was the Systems Architect for our project and assisted all of my teammates when possible. | took the lead
at preparing a uniform test environment that had the potential for stability under heavy utilization. With this
we also used Dockers to keep our environment together. My original scope for the project changed overtime
and we moved many of our processes to new work flows (Asana, Git, etc.) As the System Architect for the
project team it was also my responsibility to pick up on code cleanup; if possible, and ensure that we were
keeping our function calls clean and concise. We would hold weekly meetings and | would conduct a merge
code review where we would evaluate the changes that were being made to our system and ensure that
they didn’t conflict with other planned changes. During the tail end of our project we began to become a bit
adventurous with our features and misjudged our time. We had many pieces of code which are available (as
partially prepared); however, the results are not quite as clean as we’d like.

4.4.3. Suzanna Schmeelk, ss4648

Suzanna was the project manager and test implementer. Suzanna broke apart the compiler and the
write-up in Asana and laid out the first 40 pages of the final write-up outline. The asana lists over 70 tasks to
complete. The other team members added tasking in asana as they found additional cases. Suzanna
tasked each team member with deadlines that were rarely attended too. Suzanna implemented the the
basic flow of the compiler with adding the break and continue statements. Suzanna added char variable

30 of 74

times and reference throughout the program (which Zac improved). Suzanna worked with Adam to get
1-dimensional array functionality working. Adam continued work on arrays through the remainder of the
project. Suzanna added float variables throughout the compiler and the respective llvm operations.
Suzanna implemented the casting of primitive values for math operations (e.g. int to float). Suzanna jumped
in to help out with struct declarations which were successful. Suzanna created the regression tests and a
repository of over 150 test cases. The regression test script prints out the number of tests run, the number
of tests that pass and the number of tests that fail.

4.4.4. Rui Gu, rg2970

Rui takes part in architecture design, function implementation and testing. Rui implements putchar() and
getchar() as a compiler built-in. This two functions serve as the basic primitive to implement our 10 function.
He also implemented “extern” keywords to allow external calls and let the linker resolve external functions.
Thanks to the strong help from the Suzanna & Zach, Rui is able to finish struct declaration, which allows
user to declare their own synthetic types. All the above mentioned implemented functionalities are complete
and works 100% in different situations.

4.5. Software Development Environment

4.5.1. Software Development Tools

4.5.1.1.Version Control System: GitHub

Our team used Git (specifically Glthub) to oversee changes to code done by the various team members.
We each used our own separate branches from the master and would merge code as scheduled intervals.

4.5.1.2. Docker

Our team used Docker to keep a consistent building environment. Each of us maintains one to several
docker containers other people can attach. Docker helps us collaborate efficiently and also ensured that we

had access to the same environment; on and off campus.

310f 74

4.5.2. Software Development Languages

4.5.2.1. OCaml

OCaml, created in 1996, was originally known as Objective Caml. OCaml is a member of the ML language
family. It extends Caml language with object-oriented constructs. OCaml is a free open-source project. It is
primarly managed and maintained by INRIA in France.

4.5.2.2. LLVM: Low Level Virtual Machine

The LLVM compiler infrastructure project is formerly known as the Low Level Virtual Machine. The project
started in 2000 at the University of lllinois at Urbana—Champaign, under the direction of Vikram Adve and
Chris Lattner. According to the LLVM website, it is a collection of modular and reusable compiler and

toolchain technologies used to develop compiler front ends and back ends .

LLVM is written in C++ and is designed for compile-time, link-time, run-time, and "idle-time" optimization of
programs written in arbitrary programming languages. OCaml has a library where it can write LLVM

intermediate representation (IR) code.

4.5.2.3. Bash Scripts for Regression Testing

The Bash command language, first released in 1989, was written by Brian Fox for the GNU Project as
replacement for the Bourne shell. It is widely released with Linux distributions.

4.6. Project Log (Asana)

Please see Appendix B

5. Language Evolution (by Guru)

5.1. Phase 1: Proposal Commitments

We initially committed to a language with strict typing (and no casting), and a spartan/simple type of C (that
is where we made up the name SimpliCty).

32 of 74

5.2. Phase 2: Language Reference Enhancements

After discussing the proposal with both the professor and the TA, we realized that such a language would be
too simplistic and easy for us to do. We then saw the baseline of Micro C and that confirmed it to us. We
therefore transitioned to try to implement as much as possible that C has. Pointers were too complicated,
but we settled on implementing arrays and structures, and we had agreed with our TA that it would be

appealing if we could implement syscalls (machine specific, and we were planning on doing it in x86).

5.3. Phase 3: Final Enhancements

We were able to implement declaration and assignment in the same line, and global variables (which we did
not specify in our original documentation). Single dimensional arrays were correctly implemented, but the
transition to multi-dimensional arrays broke much of that code. We were unable to implement syscalls, but

we did build much of our standard library from the two basic C functions getchar() and putchar().

33 of 74

6. Translator Architectural Design (by Sys. Architect)

6.1. Block Diagram of the Major Components of our Compiler

SCT | Lexical
Pgm. Lexer Tokens Parser Angfix' :
T Semantics
Checking
SAST
Llivm li tool
Code
Generation J

6.2. Interfaces between the components

There are multiple interfaces between components. First, the source program is passed into the
compiler. A scanner scans the program and attempts to parse it. Parsing creates an abstract syntax tree.
The abstract syntax tree is passed to semantic checking ensuring a syntactically correct AST. The SAST is
passed to the LLVM code generator. The code generator performs a poster-order AST transversal to create
the respective LLVM. The LLVM JIT compiler transforms the llvm into machine code which can be

executed.

6.3. Who implemented each component

34 of 74

We all worked together to get the basic control-flow, local variables, global variables defined and

semantic checking working.

Rui

Adam

Zac

Suzanna

*Docker
*Environment Setting
*Externs

*Putchar

*Getchar

*Struct decls

*Tests

*Regression Testing
script robustness

*Array declaration
*Array index assignment
*Array bulk assignment
*Array literal
*Multidimensional
arrays

*modulo

*crement operators
*mathematical
assignment

*Tests

*Docker

*Environment Setting
*Managed GIT
*Finished char codegen
*Array -> Char combine
*Strings

*Tests

*Chars

*Scanner Syntax

*AST Matching

*2nd Proj Mgmt

*Asana tasking

*Proj. mgnt.

*Array declaration
*Char scanning, AST,
*Float scanning, parsing
*Float operations
*Casting

*Break Statements
*Cont. Statements
*Struct decls in llvm
*Regression Testing
script robustness
*Tests

7. Test Plan and Scripts (by Tester)

LLI="11i"
#LLI="/usr/local/opt/llvm/bin/111i"

Path to the simpliCty compiler.
Try " build/simplicty.native" if ocamlbuild was unable to create a symbolic link.
SIMPLICTY="../simplicty"

globallog=test.log

#!/bin/sh

Project: COMS S4115, SimpliCty Compiler

Filename: src/testall.sh

Authors: - Ruil Gu, rg2970

- Adam Hadar, anh2130

- Zachary Moffitt, znm2104

- Suzanna Schmeelk, ss4648

Purpose: * Regression testing script for SimpliCty
* Steps through list of files:

* Expected to work: compile, run, check output
* Expected to fail: compile, check error
Modified: 2016-07-24

Path to the LLVM interpreter

Usually "./simplicty.native"

Set time limit for all operations
ulimit -t 30

35 of 74

rm -f S$globallog
error=0
testcountall=0
testcounttest=0
testcounttestpass=0
testcounttestfail=0
testcountfail=0
testcountfailpass=0
testcountfailfail=0
globalerror=0
dirout=./test-output/

keep=0
Usage () {
echo "Usage: testall.sh [options] [.mc files]"
echo "-h Print this help"
echo "-k Keep intermediate files"
echo "-1 Test loop statements"
echo "-d Test declaration statements"
echo "-p Test print statements"
echo "-s Test scan statements"
echo "-r Test array statements"
echo "-t Test struct statements"
echo "-f Test function statements"
echo "-i Test if statements"
echo "-o Test operator statements"
echo "-g Test assignment statements"
echo "-a Test all statements"
exit 1
}
SignalError () {
if [Serror -eq 0] ; then
echo "FAILED"
error=1
fi
echo " S$1"

Compare <outfile> <reffile> <difffile>
Compares the outfile with reffile. Differences, if any, written to difffile
Compare () {
generatedfiles="$generatedfiles $3"
echo diff -b ${dirout}s$l $2 ">" $3 1>&2
diff -b "${dirout}S$1"™ "S$2" > "S{dirout}s$3" 2>&1 || {
SignalError "$1 differs"
echo "FAILED $1 differs from $2" 1>&2
}

Run <args>
Report the command, run it, and report any errors
Run () {
echo $* 1>&2
eval $* || {
SignalError "$1 failed on $*"
return 1

}

36 of 74

RunFail <args>
Report the command, run it, and expect an error
RunFail () {
echo $* 1>&2
eval $* && {
SignalError "failed: $* did not report an error"
return 1
}

return 0

Check () {
error=0
basename="echo $1 | sed 's/.*\\///
s/.sct//""
reffile="echo $1 | sed 's/.sct$//'"®
basedir=""echo $1 | sed 's/\/["\/1*$//' /."

echo -n "$basename...'

echo 1>&2
echo "###### Testing S$basename" 1>&2

generatedfiles=""

testcountall=$ ((testcountall+l))

testcounttest=$ ((testcounttest+1l))

generatedfiles="$generatedfiles ${basename}.ll ${basename}.out" &&

Run "S$SIMPLICTY" $1 ">" "S$S{dirout}${basename}.ll" &&

Run "SLLI"™ "S${dirout}${basename}.ll" ">" "S{dirout}${basename}.out" &é&
Compare ${basename}.out ${reffile}.out ${basename}.diff

Report the status and clean up the generated files

if [Serror -eq 0] ; then
if [Skeep -eq 0] ; then
rm -f Sgeneratedfiles
rm —-f ${dirout}/*
fi
echo "OK"
echo "###### SUCCESS" 1>&2
testcounttestpass=$ ((testcounttestpass+1l))
else
echo "###### FAILED" 1>&2
testcounttestfail=$ ((testcounttestfail+l))
globalerror=$error
fi

CheckFail () {
error=0
basename="echo $1 | sed 's/.*\\///
s/.sct//""
reffile="echo $1 | sed 's/.sct$//'"®
basedir=""echo $1 | sed 's/\/["\/1*$//' /."

echo -n "S$basename..."

echo 1>&2
echo "###### Testing S$basename" 1>&2

37 of 74

testcountall=$ ((testcountall+l))
testcountfail=$ ((testcountfail+l))
generatedfiles=""

generatedfiles="Sgeneratedfiles ${basename}.err ${basename}.diff" &&

RunFail "S$SIMPLICTY" $1 "2>" "S${dirout}${basename}.err" ">>" S$Sgloballog &&

Compare ${basename}.err ${reffile}.err ${basename}.diff
Report the status and clean up the generated files

if [Serror -eq 0] ; then

if [Skeep -eq 0] ; then
rm —-f Sgeneratedfiles

fi

echo "OK"

echo "###### SUCCESS" 1>&2
testcountfailpass=$ ((testcountfailpass+l))
else

echo "###### FAILED" 1>&2
testcountfailfail=$((testcountfailfail+l))

globalerror=$error
fi

LLIFail() {
echo "Could not find the LLVM interpreter \"SLLI\"."

echo "Check your LLVM installation and/or modify the LLI variable in testall

exit 1
}
Test () |
for file in $files
do
case $file in
test-)
Check $file 2>> $globallog
fail-)
CheckFail $file 2>> $globallog
g
echo "unknown file type $file"
globalerror=1
esac
done
which "SLLI" >> $globallog || LLIFail

TestLoop () {
echo "Testing Loops"
files="test/loops/test-*.sct fail/loops/fail-*.sct"
Test

TestDec () {
echo "Testing Declarations"
files="test/declaration/test-*.sct fail/declaration/fail-*.sct"

.sh"

38 of 74

Test

TestPrint () {
echo "Testing Print"
files="test/print/test-*.sct fail/print/fail-*.sct"
Test

TestScan () {
echo "Testing Scan"
files="test/scan/test-*.sct fail/scan/fail-*.sct"
Test

TestArray () {
echo "Testing Array"
files="test/array/test-*.sct fail/array/fail-*.sct"
Test

TestStruct () {
echo "Testing Struct"
files="test/struct/test-*.sct fail/struct/fail-*.sct"
Test

TestFun () {
echo "Testing Functions"
files="test/functions/test-*.sct fail/functions/fail-*.sct"
Test

TestIf () {
echo "Testing If"
files="test/if/test-*.sct fail/if/fail-*.sct"
Test

TestOp () {
echo "Testing Operators"
files="test/operators/test-*.sct fail/operators/fail-*.sct"
Test

files="test/operators/binary/test-*.sct fail/operators/binary/fail-*.sct"

Test

files="test/operators/unary/test-*.sct fail/operators/unary/fail-*.sct"

Test

TestAssign () {
echo "Testing Assignments"
files="test/assignment/test-*.sct fail/assignment/fail-*.sct"
Test

files="test/assignment/lvalue/test-*.sct fail/assignment/lvalue/fail-*.sct"

Test

files="test/assignment/literal/test-*.sct fail/assignment/literal/fail-*.sct"

Test

files="test/assignment/char/test-*.sct fail/assignment/char/fail-*.sct"

Test

39 of 74

TestAll () {
TestLoop
TestDec
TestPrint
TestScan
TestArray
TestStruct
TestFun
TestIf
TestOp
TestAssign

options='khldpsrtfioga*"'
while getopts $options optchar; do
case Soptchar in
k) # Keep intermediate files
keep=1
h) # Help
Usage; exit 0;
1) # Test loop statements
TestLoop; exit O0;
d) # Test declaration statements
TestDec; exit 0;
p) # Test print statements
TestPrint; exit 0;
s) # Test scan statements
TestScan; exit 0;
r) # Test array statements
TestArray; exit 0;
t) # Test struct statements
TestStruct; exit 0;
f) # Test fun statements
TestFun; exit 0;
i) # Test 1if statements
TestIf; exit 0;
o) # Test operator statements
TestOp; exit 0;
g) # Test assign statements
TestAssign; exit 0;
a) # Test all statements
TestAll; exit 0;
*) # Default
TestAll; exit O;

esac

40 of 74

done

TestAll

echo "Number of all tests executed " S$testcountall"!"

echo "Number of test tests executed " S$testcounttest " of which " $testcounttestpass
" passed and " Stestcounttestfail " failed"

echo "Number of fail tests executed " S$testcountfail " of which " S$testcountfailpass
" passed and " S$testcountfailfail " failed"

shift “expr SOPTIND - 1°

exit $globalerror

7.1. Source to Target Examples

7.1.1. Example 1: Tic Tac Toe

void prints(char[] val)
{
int ptr;
while (val[ptr] != 0)
putchar (val [ptr++]);
putchar (10) ;
return;

void printc(char val)
{
putchar (val) ;
putchar (10) ;
return;

putchar (95) ;

char[3][3] board = {| {|" ', " "', " "I}, {1 ' ' "y, {1
char[5] turn = {|'t','u','r','n',0]|};
char[10] row = {|'i','n','p",'u','t"'," ', 'r','0','w',0]};
char[10] col = {|'i','n','p",'u','t"'," ', 'c','0o','1',0]};
char[10] end = {|'g','a','m",'e'," ", '0','v','e',"'v',0]};
char([14] winner = {|'t','h','e'," ', 'w','i','n'",'n",'e','r',"
void printBoard ()
{
int 1i;
int j;
for(i = 0; 1 < 3; i++)
{
for(j = 0; 3 < 3; j++)
{
putchar (board[i] [Jj]) s
if(3 '= 2)
putchar (124); /* the |
}
putchar (10) ;
if(i !'= 2)
{
putchar (95) ; /* the

character */

character */
/* for pretty printing */

41 of 74

}
return;
}
bool is gameOver ()
{
int 1i;
for(i = 0; 1 < 3; i++)

{

if ((board[1i][0] == board[i][1l] && board[i][0] == board[i][2])
|| (board[0][i] == board[1l][i] && board[0][i] == board[2][i]))
return true;
}
1f ((board[0] [0] == board[1l][1l] && board[0][0] == board[2][2])
|| (board[0][2] == board[1l][1l] && board[0][2] == board[2][0]))

return true;

return false;

}

int main ()
{
int 1i;
int j;
int x;
int y;
bool cont = true;
bool is x = true;

for(i = 0; i < 9 && cont; i++)
{
prints (turn);
if (is x) printc('X'");
else printc('0");

prints (row) ;

x = getchar() - '0';
prints(col) ;

y = getchar() - '0';
if(is_x) board[x][y] = 'X';
else board[x] [y] = '0O';

printBoard() ;

if (is_gameOver())
{
prints (end) ;
prints (winner) ;
if (is_x)
printc('X");
else
printc('0");
cont = false;

42 of 74

is_x = !is_x;
}

return O;

7.1.2. Example 2: Extern Functions

extern int add (int a, int b);

extern int minus (int a, int b);
extern int times (int a, int b);
int main() {

int a = 65;

int b = 1;

int ¢ = 0;

c = add(a, b);

putchar (c) ;

return 0;

Output:
> ./regression-test.sh

; ModuleID = 'SimpliCty'
declare i32 (@putchar (i32)
declare i32 (@getchar(...)
declare 132 @add(i32, 132)
declare 132 @minus (i32, 132)
declare 132 @times (i32, 132)
define i32 @main () {
entry:

%a = alloca 132

store i32 65, 132* %a

%b = alloca 132

store 132 1, 132* %b

%$c = alloca 132

store i32 0, 132* %c

$1lv = load 132, i32* %b

$1lvl = load 132, i32* %a

%add result = call 132 @add(i32 %1lvl, 132 %1v)
store 132 %add result, i32* %c

$1lv2 = load 132, 1i32* %c

Sputchar = call 132 @putchar(i32 %$1v2)
ret 132 0

7.1.3. Example 3: test-float-mixed.sct

43 of 74

float £;
int i;
int main() {
int x;
float y;
f = 123.456;
i = 999;
X = 1i;
y = 123.45 + 999 + 12.4567;
f =198.2 + 6 + 97.1;

return 0;

Output:
> ./regression-test.sh

; ModuleID = 'SimpliCty'

@i global i32 0
@f = global float 0.000000e+00

declare 132 (@putchar (i32)

define i32 @main () {
entry:
$x = alloca 132
store 132 0, 132* %x
%y = alloca float
store float 0.000000e+00, float* %y
store float O0x405EDD2F20000000, float* Q@f
store 132 999, i32* @i
$1lv = load 132, i32* @i
store 132 %lv, 132* %x
store float 0x4091BBA060000000, float* Sy
store float 0x4072D4CCC0000000, float* Qf
ret i32 0

root@f63df2ece60l:# ./simplicty test-float-mixed.sct

7.1.4. Example 4: Test-struct4.sct

Our compiler parses and declares global structs based on the embedded fields.

struct Books {
int 1id;
int idl;
int 1d2;
int id3;
float f1;
float £2;

root@f63df2ece60l:/soft-1link/archive/8 11 2016 350pm# cat test-structéd.sct

44 of 74

int main() {
return 0;

}

root@f63df2ece60l:# ./simplicty test-structéd.sct
; ModuleID = 'SimpliCty'

%$Books = type { 132, i32, 132, i32, float, float }
@Books = external global $Books

declare 132 (@putchar (i32)

define 132 @main() {
entry:
ret 132 0

}

7.1.5. Example 5: Break Statements

root@f63df2ece60l:# cat tests/test/loops/test-for-for-break0.sct

int main ()
{
int 1i;
int x;
int j;
for (i =0 ; 1 <5
i++;
if(i == 9)
{

; d++) {

for(j = 0; 7 < 9; j++)
{

if (i ==9)

{

break;

else{
x = 9999;
}

}

return 0;

root@f63df2ece60l:4# ./simplicty tests/test/loops/test-for-for-break0.sct
; ModuleID = 'SimpliCty'

45 of 74

%aname
%aname
$aname

@aname

= type { 132, float }
.0 = type { i32, float }
1 = type { 132, float }

= external global %aname

declare 132 (@putchar (i32)

define 132 @main() {
entry:
%aname = alloca %aname
%1 = alloca 132

store 132 0, 132* %i

%anamel = alloca %aname.O0
$x = alloca 132

store 132 0, 132* %x
%aname?2 = alloca %aname.l
%3 = alloca 132

store 132 0, i32* %j

store 132 0, 132* %i
br label %while.cmp.block

while.

Sentry

cmp.block:

$1v19 = load i32, 132* %i
$tmp20 = icmp slt 132 %$1v19, 5
br il %$tmp20, label %$while.body, label $while.merge.block

while.
S1lv

Stmp

body:
= load i32, i32* %i
= add i32 %1lv, 1

store i32 S%tmp, i32* %i

$1v3 = load 132, 132* %i
Stmp4 icmp eqg 132 %1v3, 9

br il %$tmp4, label %if.then, label

while.

ret

merge.block:
i32 0

declare i32 (@putchar (i32)

define i32 @main () {

entry:

ret

}

i32 0

if.else.merge:
Swhile.merge.block?7

$1lvl7 = load 132, i32* %

i
$tmpl8 = add i32 %$1v17, 1
store i32 $tmpl8, i32* %i
br label %while.cmp.block

if.then:
store 132 0, 132* %j
br label %$while.cmp.block5

while.

cmp.block5:

$if.else.mergel0, %if.then
$1lvld = load 132, i32* %3

’

’

$if.elsel6

’

’

’

’

preds

preds

preds

preds

preds

preds

= %if.else.merge,

= Swhile.cmp.block

= Swhile.cmp.block

= %if.elseléo,

= %while.body

46 of 74

Stmpl5 = icmp slt 132 %$1v14, 9
br il $tmpl5, label $while.body6, label $while.merge.block?

while.body6: ; preds =
Swhile.cmp.block5

$1lv8 = load 132, i32* %i

Stmp9 = icmp eqg 132 $1v8, 9

br il %$tmp9, label %if.thenll, label %if.else

while.merge.block7: ; preds
Swhile.cmp.block5, %if.thenll
br label %if.else.merge

if.else.mergelO: ; preds = %$if.else,
safter.break

$1lvl2 = load 132, 1i32* %3

$tmpl3 = add i32 %$1lv12, 1

store 132 $tmpl3, i32* %3

br label %$while.cmp.block5

if.thenll: ; preds = Swhile.body6
br label %while.merge.block?

after.break: ; No predecessors!
br label %if.else.mergel0

if.else: ; preds = Swhile.body6
br label %if.else.mergel0

if.elselo6: ; preds = Swhile.body
store 132 9999, i32* %x
br label %if.else.merge

7.1.5. Example 5: Continue Statements

We implemented continue statements.

root@f63df2ece601l# cat tests/test/loops/test-while-while-continueO.sct

int main ()
{
int i;
int j;
int x;
i =5;
j = 6;
x = 9;
while (i > 0) {

if (1==9) {

47 of 74

}

if (x == 9)

continue;

return 0;

root@f63df2ece60l:/soft-1link/archive/8 11 2016 350pm# ./simplicty

../../tests/test/loops/test-while-while-continue0.sct
; ModuleID = 'SimpliCty'

%$aname = type { 132, float }
%aname.0 = type { 132, float }
%aname.l = type { 132, float }
@aname = external global %aname

declare 132 (@putchar (i32)

define 132 @main () {

entry:
%aname = alloca %aname
%1 = alloca 132
store i32 0, 132* %i
%anamel = alloca %aname.O0
%3 = alloca 132
store 132 0, 132* %j
%$aname?2 = alloca %aname.l
%$x = alloca 132
store 132 0, 132* %$x
store i32 5, 132* %i
store 132 6, i32* %j
store 132 9, 132* %x

br label %while.cmp.block

while.cmp.block: ; preds
Sentry

$1lvl5 = load i32, i32* %i

Stmpl6 = icmp sgt 132 $1v15, O

= %$if.else.merge,

br il $tmpl6, label S$while.body, label $while.merge.block

while.body: ; preds
$1lv = load i32, i32* %i

Stmp = sub 132 $%$lv, 1
store i32 S%tmp, 1i32* %i
$1lv3 = load 132, i32* %i

Stmp4 = icmp eqg 132 $1v3, 9
br il %tmp4, label %if.then, label %$if.elseld
while.merge.block: ; preds
ret 132 0
if.else.merge: ; preds

$while.merge.block?7
br label %while.cmp.block

= Swhile.cmp.block

= $while.cmp.block

= %$if.elseld,

48 of 74

if.then:
br label %$while.cmp.block5

while.cmp.block5:

$if.else.mergel0, %$if.thenll, %$if.then
$1lvl2 = load 132, i32* %3
$tmpl3 = icmp sgt i32 %$1v12, O

while.body6:
Swhile.cmp.block5
$1lv8 = load 132, 132* %x
Stmp9 = icmp eq 132 $1v8, 9
br il $tmp9, label %if.thenll, label %if.else

while.merge.block7:
$while.cmp.block5

br label %if.else.merge
if.else.mergelO:
safter.cont

br label %$while.cmp.block5
if.thenll:

br label %$while.cmp.block5

br label %if.else.mergel0

br label %if.else.mergel0

br label %if.else.merge

after.cont: g

if.else: ;

if.elseld: ;

preds

preds

br il $tmpl3, label %while.body6, label %while.merge.

preds

preds

preds

preds

Swhile.body

$if.else,

swhile.body6

No predecessors!

preds

preds

Swhile.body6

Swhile.body

7.2. Test Suites

7.2.1. Why and How these Test Cases were Chosen

Our test cases fall into two categories. The first category is basic tests. Basic tests server as unit tests that

targets on particular basic functionalities we implement. For example, string declaration, assignment, etc..

49 of 74

The second category is synthetic test cases. These test cases involves multiple components and

implemented functionalities, like our tic-tac-toe and hello world.

7.2.2. Type of Automation Used In Testing

We used a bash script to test over 150 test cases with both tests and failure scenarios. As we started to get
a huge number of test cases, Suzanna wrote a script to output errors into log files and read in test files
based directory structure. The script has command-line features to run certain regression tests. Typing
Iregression-test.sh -h lists the different test cases that can be run separately. If no command-line

arguments are passed to the test script then all the 150+ test cases are run.

7.2.3. Who Did What in Testing

The table below summarizes each person's contributions to testing.

Team Member Testing Role

Rui Gu Wrote the main regression testing script. Wrote test cases for
sections implemented.

Adam Hadar Wrote test cases for the sections | implemented: modulo, array
assignment, declaration, passing.

Zachary Moffitt Wrote test cases for sections implemented.

Suzanna Suzanna wrote the main regression testing script. The script counts
Schmeelk the tests that pass and fail. Suzann created testcases and created
directories based on the regression test cases.

8. Lessons Learned (by Team)

In this section we describe the lessons learned by the team for an accelerated summer class.

8.1. Rui Gu, rg2970

One thing | learnt is a good time management skill is an absolute requirement for a group project.
Other things would be always run regression test before commit. Also, docker is really convenient.

50 of 74

8.2. Adam Hadar, anh2130

Start early, and test often. Communicate with your TA regularly (and more often than the regular
once a week meetings) regarding issues and overall direction. Never merge to master if there are bugs.
Git is incredibly annoying to resolve merge conflicts, so make sure to allocate a large amount of time to
merging code together. Or get a better VC system. Merging code from various branches will also be a
huge time suck, and literally everything you've done will break, so take that amount of time you devoted to
merging code and double it. Stay in daily contact with your teammates, to make sure that if they are
struggling you can help them, (or to make sure they are working at all). You will all be working on the
same pieces of code, so there will be a lot of overlap between yourself and your teammates in terms of
the things you are writing (Zach and | wrote the same Array Literal code independently). This will lead to
many, many merge conflicts. And deleting redundancies. And making your life very difficult in the hours

before you submit your final project.

8.3. Zachary Moffitt, znm2104

| learned that you should keep strict deadlines with your team and always pad at least 50% of your time, if
not more. Both Suzanna and | work full time and had difficulty securing a time that would work well for
everyone. | believe that we spent so much of our time trying to organize how we were going to complete the
project and meet our goals and at the same time underestimating the varying difficulty between different
tasks. With this we also found that working on the same pieces of code and trying to access memory
elements via LLVM ends up being extremely difficult and we do not realize what the necessary variables are

until you've completely worked out a function.

8.4. Suzanna Schmeelk, ss4648

I learned a lot during this awesome five week intensive course--especially time management. For
prospective students, you will need to manage homeworks, extended classes, deadlines, final exam, final
write-up, teammate schedules, as well as writing a compiler in OCaml and potentially learn LLVM in 5 weeks
total.). As the project manager, | spent a great deal of time tasking out our compiler features on Asana.
Asana turned out to be a huge help for the team but the team left some of their features unimplemented.
Also, our team was awesome with version control, so we never had a serious merge issue until the very
end. | was pleasantly surprised by how well Git ended up working out, albeit Git can be quite frustrating at
times. All teammates tested their code before merging with the master branch which | seriously advise to

prospective students.

51 of 74

9. Appendix - Full Code Listing (by Team)

9.1 Main file (simplicty.ml)

(*
Project: COMS S4115, SimpliCty Compiler
Filename: src/simplicty.ml
Authors: - Ruil Gu, rg2970

- Adam Hadar, anh2130

- Zachary Moffitt, znm2104

- Suzanna Schmeelk, ss4648
Purpose: * Top level for SimpliCty compiler

* Scan & parse input, global variables

* Check each function in the resulting AST, generate LLVM IR, dump module
Modified: 2016-08-11

*)

type action = Ast | LLVM IR | Compile

let =
if Array.length Sys.argv <= 1 then (
print string "Usage: ./simplicty [-al-1|-c] source code\n";
exit 1);;
let action = if Array.length Sys.argv > 2 then
List.assoc Sys.argv. (l) [("-a", Ast); (* Print the AST only *)
("-1", LLVM IR); (* Generate LLVM, don't check *)
("-c", Compile)] (* Generate, check LLVM IR *)

else Compile in
let inputfile = Sys.argv. (Array.length Sys.argv - 1) in
let lexbuf = Lexing.from channel (open in inputfile) in
let ast = Parser.program Scanner.token lexbuf in
Semant.check ast;
match action with

Ast -> print string (Ast.string of program ast)
| LLVM IR -> print string (Llvm.string of llmodule (Codegen.translate ast))
| Compile -> let m = Codegen.translate ast in

Llvm analysis.assert valid module m;

print string (Llvm.string of llmodule m)

9.2 Scanner

(*
Project: COMS S4115, SimpliCty Compiler
Filename: src/scanner.mll
Authors: - Ruil Gu, rg2970
- Adam Hadar, anh2130
- Zachary Moffitt, znm2104
- Suzanna Schmeelk, ss4648
Purpose: * Scan an inputted SimpliCty file
Modified: 2016-08-11
*)

{ open Parser }

52 of 74

rule token = parse
[" ' '\t'" '"\r' '\n'] { token lexbuf } (* Whitespace *)
Wyesw comment lexbuf } (* Comments *)
v LPAREN }
') RPAREN }
LBRACE }
RBRACE }
LBRACKET }
SINGLEQT }
DOUBLEQT }
RBRACKET }
" { OPENARR }
CLOSEARR }
SEMI }
COMMA }
PLUS }
MINUS }
TIMES }
DIVIDE }
MODULO }
ASSIGNREG }

{

{

{

{

{

{

{

{

{
"+=" { ASSIGNADD }
"-=" { ASSIGNSUB }
"x=" { ASSIGNMULT }
"/=" { ASSIGNDIV }
"$=" { ASSIGNMOD }
"==" { EQ }
"i=" { NEQ }
0g0 { LT }
"<=" { LEQ }

{ GT }
">=" { GEQ }
"s&" { AND }
"II" { OR }
"It { NOT }
"++" { PLUSPLUS }
"--" { MINUSMINUS }
"if" { IF }
"else" { ELSE }

"for" { FOR }

"while" { WHILE }
"break" { BREAK }
"continue" { CONTINUE }
"return" { RETURN }

I

I

I

|

|

I

I

I

I

I

I

|

|

I

I

I

I

I

I

|

|

I

I

I

I

I

I

|

| s
I

I

I

I

I

I

|

|

I

I

I

I

I

| "int" { INT }
|
|
I
I
I
I
I
I
|
|
I
I
I
I

"float" { FLOAT }

"char" { INT }

"bool" { BOOL }

"yoid" { VOID }

"true" { TRUE }

"string" { STRING }

"false"™ { FALSE }

"extern" { EXTERN }

["+' '"="]?2['0'-'9']+ as 1lxm { INTLIT(int of string lxm) }

[ta'='z'" 'A'-'Z2'"]['a'=-"z" '"A'-'Z' '0'-'9" ' ']* as lxm { ID(lxm) }

"\''"['a'="'z" 'A'='z' ' ' "1V 1Q'='Q']*'\'' as lxm { INTLIT(int of char lxm.[1]) }

tmrptat=rz' 'A'-'z' ' ' "IV 'Q'-'O']+'"" as 1lxm { STRINGS (lxm) }

["+' '"="]2['0'='9"]*".'['0'-'9"']* as 1lxm { FLOATLIT (float of string lxm) }

["+' '="]2['0'="9"']["'.']2['0"'="'9"'"]*'e"['=" '"+']2['0'-"'9']* as lxm {
FLOATLIT (float of string lxm) }
[['+" "='12['0'='9']*'e"['="' "+']?2['0'-"'9']* as lxm { FLOATLIT (float of string lxm)

| eof { EOF 1}
| _as char { raise (Failure("illegal character " ” Char.escaped char)) }

and comment = parse

}

53 of 74

"k /" { token lexbuf }
{ comment lexbuf }

9.2. Parser

/~k
Project: COMS S4115, SimpliCty Compiler
Filename: src/parser.mly
Authors: - Ruil Gu, rg2970

- Adam Hadar, anh2130

- Zachary Moffitt, znm2104

- Suzanna Schmeelk, ss4648
Purpose: * Ocamlyacc parser for SimpliCty
Modified: 2016-08-11

*/
5 {
open Ast
let explode s = let rec £ t = function
| -1 -> t
| h => £ (s.[h] :: t) (h - 1)
in £ [] (String.length s - 1)

o

}

%$token SEMI LPAREN RPAREN LBRACE RBRACE LBRACKET RBRACKET COMMA SINGLEQT DOUBLEQT OPENARR
CLOSEARR

$token PLUS MINUS TIMES DIVIDE MODULO

%token NOT PLUSPLUS MINUSMINUS

%token ASSIGNREG ASSIGNADD ASSIGNSUB ASSIGNMULT ASSIGNDIV ASSIGNMOD

%$token EQ NEQ LT LEQ GT GEQ TRUE FALSE AND OR

%token RETURN BREAK CONTINUE IF ELSE FOR WHILE INT FLOAT BOOL VOID CHAR STRING
%token PRINT EXTERN

%token <int> INTLIT

%token <string> ID

%token <float> FLOATLIT

%token <char> CHARLIT

%token <string> STRINGS

%token EOF

%$nonassoc NOELSE

%nonassoc ELSE

gnonassoc PRINT EXTERN

$right ASSIGNADD ASSIGNSUB ASSIGNMULT ASSIGNDIV ASSIGNMOD
%$right ASSIGNREG

%$left OR

$left AND

%left EQ NEQ

$left LT GT LEQ GEQ

%$left PLUS MINUS

$left TIMES DIVIDE MODULO
%$nonassoc PLUSPLUS MINUSMINUS
%$right NOT NEG

%start program
%type <Ast.program> program

oo
oo

program:

54 of 74

modul definitions EOF { $1 }

modul definitions:
/* nothing */ { [1, [1, [] }

| modul definitions declaration { let (a, b, ¢) = $1 in ($2 :: a), b, c }
| modul definitions extern func decl { let (a, b, ¢c) = $1 in a, ($2 :: b), c }
| modul definitions func_definition { let (a, b, c¢) = $1 in a, b, ($2 :: c) }

func _definition:
typ_specifier ID LPAREN parameter list opt RPAREN LBRACE declaration_list statement list
RBRACE
{ { typ = $1;

fname = $2;

formals = $4;

locals = List.rev $7;

body = List.rev $8 } }

extern_func_decl:
EXTERN typ specifier ID LPAREN parameter list opt RPAREN SEMI
{ { e typ = $2;
e fname = $3;
e formals = $5 } }

parameter list opt:
/* nothing */ { [] }
| parameter list { List.rev $1 }

parameter list:
| parameter { [$1] }

| parameter list COMMA parameter { $3 :: $1 }
parameter:
typ specifier ID { ($1,%2, Primitive, [1]) }
| typ specifier LBRACKET RBRACKET ID { ($1,$4, Array, [01) }
| typ specifier size decl ID { ($1,$3, Array, List.rev $2) 1}

typ specifier:
INT { Int }
| FLOAT { Float }
| CHAR { Char }
| BOOL { Bool }
| STRING { String }
| VOID { Void }

declaration_list:
/* nothing */ { [] }

| declaration list declaration { $2 :: $1 }
declaration:
typ specifier ID SEMI { ($1, $2, Primitive, [O0],
[1) 1}
typ_specifier ID ASSIGNREG primary SEMI { (81, $2, Primitive, [0], [$4]) }
typ specifier size decl ID SEMI { ($1, $3, Array, List.rev $2,

|
|
[n 1

| typ specifier size decl ID ASSIGNREG decl assign arr SEMI { ($1, $3, Array, List.rev $2,
$5) }

decl assign_arr:
OPENARR arr assign CLOSEARR {List.rev $2}

arr assign:
primary {[S1]}
| arr assign STRINGS { (List.map (fun x -> (CharLit(x))) (explode
$2)) }
| arr assign COMMA primary {$3::$1}

55 of 74

size decl:
LBRACKET INTLIT RBRACKET { [52] }
| size decl LBRACKET INTLIT RBRACKET { $3::S1 }

statement list:
/* nothing */ { [] }

| statement list statement { $2 S1 }
statement:
expression SEMI { Expr $1 }

LBRACE statement list RBRACE { Block(List.rev $2) }
IF LPAREN expression RPAREN statement %prec NOELSE { If(s$3,

[

I $5,
| IF LPAREN expression RPAREN statement ELSE statement { If($3,

|

|

$5,

Block ([1)) }

$7) }

WHILE LPAREN expression RPAREN statement { While ($3, $5) }

FOR LPAREN expression opt SEMI expression SEMI expression opt RPAREN statement
{ For($3, $5, $7, $9) }

BREAK SEMI { Break }

CONTINUE SEMI { Continue }

RETURN SEMI { Return Noexpr }

RETURN expression SEMI { Return $2 }

expression opt:
/* nothing */ { Noexpr }
| expression { $1 }

expression:
primary
LPAREN expression RPAREN {

{ Primary ($1) }
$2)}
OPENARR expression list CLOSEARR {ArrLit ($2)}
lvalue arr pos { Lvarr($l,List.rev $2) }

|

|

|

| expression PLUS expression { Binop($1, Add, $3) }

| expression MINUS expression { Binop($1, Sub, $3) }

| expression TIMES expression { Binop($1l, Mult, $3) }

| expression DIVIDE expression { Binop($1, Div, $3) }

| expression MODULO expression { Binop($1, Mod, $3) }

| expression EQ expression { Binop($1l, Equal, $3) }

| expression NEQ expression { Binop($1l, Negq, $3) }

| expression LT expression { Binop($1l, Less, $3) }

| expression LEQ expression { Binop($1l, Leq, $3) }

| expression GT expression { Binop($1l, Greater, $3) }

| expression GEQ expression { Binop($1l, Geq, $3) }

| expression AND expression { Binop($1, And, $3) }

| expression OR expression { Binop($1l, Or, $3) }

| MINUS expression %$prec NEG { Unop (Neg, $2) }

| NOT expression { Unop (Not, $2) }

| PLUSPLUS expression { Crement (Pre, PlusPlus, $2) 1}

| MINUSMINUS expression { Crement (Pre, MinusMinus, $2) }

| expression PLUSPLUS { Crement (Post, PlusPlus, $1) 1}

| expression MINUSMINUS { Crement (Post, MinusMinus, $1) }

| expression ASSIGNREG expression { Assign($1l, AssnReg, $3) }
| expression ASSIGNADD expression { Assign($1, AssnAdd, $3) }
| expression ASSIGNSUB expression { Assign($1l, AssnSub, $3) }
| expression ASSIGNMULT expression { Assign($1, AssnMult, $3) }
| expression ASSIGNDIV expression { Assign($1l, AssnDiv, $3) }
| expression ASSIGNMOD expression { Assign($1l, AssnMod, $3) }
|

ID LPAREN expression list opt RPAREN { Call($1,

primary:
INTLIT
| FLOATLIT {
| CHARLIT {
| TRUE
| FALSE

{ IntLit($1) }
FloatLit ($1) }
CharLit ($1) }

{ BoolLit (true) }

{ BoolLit (false) }

$3) }

56 of 74

| lvalue { Lvalue ($1) }

lvalue:
D { Id(s$1) }
/*| ID LBRACKET expression RBRACKET { Arr($1,$3) }*/

arr pos:
LBRACKET expression RBRACKET {[$2]}
| arr pos LBRACKET expression RBRACKET {$3::$1}

expression list opt:
/* nothing */ { [] }

| expression list { List.rev $1 }

expression list:

expression { [$1] }
| STRINGS { ((List.map (fun x -> (StringConv(x))) (explode $1))) }
| expression list COMMA expression { $3 :: $1 }

9.4. AST

(*
Project: COMS S4115, SimpliCty Compiler
Filename: src/ast.ml
Authors: - Ruil Gu, rg2970
- Adam Hadar, anh2130
- Zachary Moffitt, znm2104
- Suzanna Schmeelk, ss4648
Purpose: * Generate abstract syntax tree
* Functions for printing the AST
Modified: 2016-08-11

*)
type decl = Primitive | Array (* | Struct *)

type op = Add | Sub | Mult | Div | Mod | Equal | Neq | Less | Leqg | Greater | Geqg |
And | Or

type uop = Neg | Not
type crement = PlusPlus | MinusMinus
type crementDir = Pre | Post
type typ = Int | Float | Bool | Void | Char | String
type assn = AssnReg | AssnAdd | AssnSub | AssnMult | AssnDiv | AssnMod
type lvalue =
Id of string
(*| Arr of string * int ¥*)
type primary =
IntLit of int
| FloatLit of float
| CharLit of char
| BoolLit of bool
|

Lvalue of lvalue

type expr =

57 of 74

Primary of primary
| ArrLit of expr list
| Lvarr of lvalue * (expr list)
| Binop of expr * op * expr
| Unop of uop * expr
| Crement of crementDir * crement * expr
| Assign of expr * assn * expr
| Call of string * expr list
| StringConv of char
| Noexpr

type parameter = typ * string * decl * (int list)

type declaration = typ * string * decl * (int list)

type function declaration = typ * string * decl * expr

type stmt =
Block of stmt list

| Expr of expr

| Break

| Continue
| Return of expr
| If of expr * stmt * stmt
| For of expr * expr * expr * stmt
| While of expr * stmt

type extern func decl = {
e_typ : typ;
e fname : string;
e formals : parameter list;

type func decl = {

typ : typ;

fname : string;

formals : parameter list;
locals : declaration list;

body : stmt list;

*

(primary list)

type program = declaration list * extern func decl list * func decl list

(* Pretty-printing functions *)

let string of decl = function
Primitive -> "prime"
| Array -> "array"
(*| Struct -> "struct"*)

let string of op = function
Add -> "4
| Sub -> men
| Mult => DLW
| Diwv -> "/
| Mod => "s"
| Equal -> "=="
| Neq => ="
| Less => gl
| Leq -> "<="
| Greater -> ">"
| Geg => ">="
| And -> g
|

Oor -> "||"

58 of 74

let

let

let

let

let

let

let

let

string of uop = function
Neg -> "-"

Not —> "In

string of crement = function
PlusPlus => "++"

MinusMinus -> "--"

string of crementDir = function
Pre -> "pre"
Post-> "post"

string of assn = function
AssnReg -> "="

AssnAdd -> "+="

AssnSub -> "-="

AssnMult -> "*="

AssnDiv -> "/="

AssnMod -> "&%="

string of lvalue = function

Id(s) -> s
string of primary = function

IntLit (i) -> string of int i
FloatLit (f) -> string of float £

CharLit(c) -> string of int (int of char c)
BoolLit (1) -> if 1 = true then "true" else "false"

Lvalue (1) -> string of lvalue 1
rec string of expr = function

Primary (1) —>

string of primary 1
StringConv (s) -> string of int (Char.code s)
ArrLit (lp) ->
"{|"" String.concat ", " (List.map string of expr lp) ~ "[}"
Lvarr (lv, le) ->

string of lvalue 1lv ""["” String.concat "][" (List.map string of expr le)
Binop(el, o, e2) ->

string of expr el """ "” string of op o """ "® string of expr e2
Unop (o, e) ->

A

string of uop o string of expr e
Crement (oD, o, e 1v)-> (match oD with

Pre -> string of crement o "" "” string of expr e 1lv

| Post -> string of expr e 1lv " "” string of crement o)
Assign(e_lv, o, e) ->

string of expr e lv "“" "”* string of assn o " "” string of expr e
Call(f, el) —>

f ~ "(" ~ String.concat ", " (List.map string of expr el) ~")"
Noexpr => W
rec string of stmt = function

Block (stmts) ->

"{\n" ~ String.concat "" (List.map string of stmt stmts) ~"}\n"
Expr (expr) -> string of expr expr ~";\n";
Break -> "break;\n";
Continue -> "continue;\n";
Return (expr) -> "return "~ string of expr expr "";\n";
If(e, s, Block([])) —->

"if ("~ string of expr e "")\n"”" string of stmt s
If(e, sl, s2) ->

"if ("~ string of expr e ~")\n""

string of stmt sl *
"else\n"”" string of stmt s2
For(el, e2, e3, s) —>

SR

59 of 74

An nwA An LN

"for (" ~ string of expr el ; string of expr e2 ;
string_of expr e3 ") " string of stmt s
| While (e, s) -> "while ("” string of expr e "") "” string of stmt s

let string of typ = function
Int -> "int"
| Float -> "float"
| Char -> "char"
| Bool -> "bool"
| String -> "string"
| Void -> "void"

let string of vdecl (t, id, decl, size list, prim list) =

let size' =
if decl = Primitive then ""
else "["" string of int (List.hd size list) ~"]"

and assn =
if List.length prim list = 0 then ""
else
let value =
if decl = Primitive then string of primary (List.hd prim list)
else "{|"” String.concat ", " (List.map string of primary prim list) ~ "[}"
in
" =" " value

in

string of typ t * size' ~" "~ id * assn ~";\n"

let snd of four (,id, ,) = id
let string of fdecl fdecl =
string of typ fdecl.typ ~ " " *
fdecl.fname ~ " (" ”~ String.concat ", " (List.map snd of four fdecl.formals) "
")\n{\n" *
String.concat "" (List.map string of vdecl fdecl.locals) "
String.concat "" (List.map string of stmt fdecl.body) *
" } \1’1"

let string of extern fdecl efdecl =
string of typ efdecl.e typ ~ " " *
efdecl.e fname ~ " (" ~ String.concat ", " (List.map snd of four efdecl.e formals) *
") i \n"
let string of program (vars, externs, funcs) =
String.concat "" (List.map string of vdecl vars) ~ "\n" %
String.concat "\n" (List.map string of extern fdecl externs) ~ "\n" "
String.concat "\n" (List.map string of fdecl funcs)

9.5. Semantic Checking

(*
Project: COMS S4115, SimpliCty Compiler
Filename: src/semant.ml
Authors: - Ruil Gu, rg2970
- Adam Hadar, anh2130
- Zachary Moffitt, znm2104
- Suzanna Schmeelk, ss4648
Purpose: * Semantic checking for the SimpliCty compiler
* Returns void if successful. Otherwise throws exception.
Modified: 2016-08-11
*)

60 of 74

open Ast
module StringMap = Map.Make (String)
let check (globals, externs, functions) =

(* Raise an exception if the given list has a duplicate *)
let report duplicate exceptf list =
let rec helper = function
nl :: n2 :: when nl = n2 -> raise (Failure (exceptf nl))
| _ :: £ -> helper t
[[1 -> 0
in helper (List.sort compare list)
in

(* Raise an exception if a given binding is to a void type *)

let snd of four (,id, ,) = id in

let snd of five (_, id, , ,) = id in

let check not void four exceptf = function
(Void, n, ,) -> raise (Failure (exceptf n))
[=> 0

in

let check not void five exceptf = function
(Void, n, _, _, _) -> raise (Failure (exceptf n))
_=> 0

in

(* Raise an exception of the given rvalue type cannot be assigned to
the given lvalue type *)

let check assign lvaluet rvaluet err =
if lvaluet == rvaluet then lvaluet else raise err

in

(**** Checking Global Variables ****)
List.iter (check not void five (fun n -> "illegal void global " ” n)) globals;
report duplicate (fun n -> "duplicate global " *

(**** Checking Functions ***x*)
if List.mem "putchar" (List.map (fun fd -> fd.fname) functions)

then raise (Failure ("function putchar may not be defined")) else ();

if List.mem "getchar" (List.map (fun fd -> fd.fname) functions)

then raise (Failure ("function putchar may not be defined")) else ();

report duplicate (fun n -> "duplicate function " ~ n)
(List.map (fun fd -> fd.fname) functions);

report duplicate (fun n -> "duplicate function " ~ n)
(List.map (fun fd -> fd.fname) functions);

(* Function declaration for a named function *)

let built in decls = StringMap.add "print"
{ typ = Void; fname = "print"; formals = [(Int, "x", Primitive, [])1;
locals = []; body = [] } (StringMap.singleton "printb"
{ typ = Void; fname = "printb"; formals = [(Bool, "x", Primitive, [1)1];
locals = []; body = [] })

in

let built in decls = StringMap.add "putchar"
{ typ = Void; fname = "putchar"; formals = [(Int, "x", Primitive, [1)1;
locals = []; body = [] } built in decls

in

let built in decls = StringMap.add "getchar"
{ typ = Int; fname = "getchar"; formals = [];

locals = []; body = [] } built in decls

n) (List.map snd of five globals);

61 0of 74

in
let function decls = List.fold left (fun m fd -> StringMap.add fd.fname fd m)
built in decls functions

in

let function decls = List.fold left (fun m ed -> StringMap.add ed.e fname
{ typ = ed.e_typ; fname = ed.e fname; formals = ed.e formals;
locals = []; body = [] } m)

function decls externs

in

let function decl s = try StringMap.find s function decls
with Not found -> raise (Failure ("unrecognized function " * s))

in

(*let _ = function decl "main" in*) (* Ensure "main" is defined ¥*)

let check function func =

S A

List.iter (check not void four (fun n -> "illegal void formal " n

" in " 7~ func.fname)) func.formals;

report duplicate (fun n -> "duplicate formal " ~ n ~ " in " ~ func.fname)
(List.map snd of four func.formals);

List.iter (check not void five (fun n -> "illegal void local " ~ n *

" in " #~ func.fname)) func.locals;

report duplicate (fun n -> "duplicate local " *~ n ~ " in " *

(List.map snd of five func.locals);

func.fname)

(* Type of each variable (global, formal, or local *)

let symbols = List.fold left (funm (t, n, _, , _) -> StringMap.add n t m)

StringMap.empty globals

in

let symbols = List.fold left (fun m (t, n, ,) -> StringMap.add n t m)
symbols func.formals

in

let symbols = List.fold left (funm (t, n, , ,) -> StringMap.add n t m)

symbols func.locals

in

let type of identifier s =

try StringMap.find s symbols

with Not found -> raise (Failure ("undeclared identifier " ”~ s))
in

let primary = function
IntLit _ -> Int
| FloatLit _ -> Float
| BoolLit = -> Bool
| CharLit = -> Char
| Lvalue Id(s) -> type of identifier s
in
(* Return the type of an expression or throw an exception ¥*)
let rec expr = function
Primary p -> primary p
| ArrLit _ —> Int (*TODO-ADAM: TrASH*)
| Lvarr(Id(s),_) -> type of identifier s (*TODO-ADAM: semantic checking*)
| Binop(el, op, e2) as e —>
let tl = expr el
and t2 = expr e2 in
(match op with
Add | Sub | Mult | Div | Mod when tl = Int && t2 = Int -> Int
| Add | Sub | Mult | Div | Mod when tl = Float && t2 = Float -> Float
| Add | Sub | Mult | Div | Mod when tl = Int && t2 = Float -> Float
| Add | Sub | Mult | Div | Mod when tl = Float && t2 = Int -> Float

62 of 74

| Add | Sub | Mult | Div | Mod when tl = Bool && (t2 = Int || t2 == Float) -> raise
(Failure (
"illegal cast with operator "~ string of typ tl " "~ string of op op *" "%
string of typ t2 *" in " string of expr e
))
| Add | Sub | Mult | Div | Mod when (tl = Int || tl = Float) && t2 Bool -> raise
(Failure (
"illegal cast with operator "” string of typ tl " "~ string of op op """ "*
string of typ t2 *" in " string of expr e
))
| Equal | Neg when tl = t2 -> Bool
| Less | Leqg | Greater | Geg when tl = Int && t2 = Int -> Bool
| Less | Leqg | Greater | Geqg when tl = Float && t2 = Float -> Bool
| And | Or when tl = Bool && t2 Bool -> Bool
|

)
| Unop (op, e _1lv) as ex —>
(*TODO-ADAM: failure if thing is an array*)

let t

(match op with
Neg when t = Int -> Int
| Not when t = Bool -> Bool

)
| Crement (opDir, op, e 1lv) as ex —->
(*TODO-ADAM: failure if thing is an array*)

let t

(match op with

)
|
|
(*TODO

let 1t
and rt

(match op with

)

| Call (fname, actuals) as call -> let fd = function decl fname in
if List.length actuals != List.length fd.formals then
raise (Failure ("expecting " ” string of int
(List.length fd.formals) ~ " arguments in " "~ string of expr call))
else
List.iter2 (fun (ft, _, ,) e -> let et = expr e in
ignore (check assign ft et
(Failure ("illegal actual argument found " * string of typ et *
" expected " * string of typ ft ~ " in " ~ string of expr e))))
fd.formals actuals;
fd.typ

in

let check bool expr e = if expr e != Bool

Noexpr -> Void
Assign(e 1lv, op, e) as ex ->

-> raise (Failure (
"illegal binary operator "~ string of typ tl ~" "” string of op op """ "%
string of typ t2 *" in " string of expr e
))

= expr e lv in

-> raise (Failure (
"illegal unary operator "” string of uop op *
string of typ t *" in "” string of expr ex

))

= expr e lv in

__ when t = Int -> Int

-> raise (Failure (
"illegal "” string of crementDir opDir ~ string of crement op *
" " string of typ t " in "” string of expr ex

))

-ADAM: check that arrays are assigned to arrays/arrays of same size/no matht*)
= expr e _lv
= expr e in

_ —> check assign 1t rt (Failure (
"illegal assignment "~ string of typ 1t """ = "~ string of typ rt *
" in " string of expr ex

))

63 of 74

then raise (Failure ("expected Boolean expression in " ”~ string of expr e))
else () in

(* Verify a statement or throw an exception *)
let rec stmt = function

Block sl -> let rec check block = function
[Return as s] -> stmt s

| Return :: -> raise (Failure "nothing may follow a return")
| Block sl :: ss -> check block (sl @ ss)

| s :: ss -> stmt s ; check block ss

[1 => 0

in check block sl
| Expr e -> ignore (expr e)

| Break -> ignore () (*TODO: Include outside loop check *)

| Continue -> ignore () (*TODO: Include outside loop check *)

| Return e -> let t = expr e in if t = func.typ then () else

raise (Failure ("return gives " ~ string of typ t *~ " expected " "

string of typ func.typ ©~ " in " * string of expr e))

| If(p, bl, b2) -> check bool expr p; stmt bl; stmt b2

| For(el, e2, e3, st) -> ignore (expr el); check bool expr e2;
ignore (expr e3); stmt st

| While(p, s) -> check bool expr p; stmt s

in

stmt (Block func.body)

in
List.iter check function functions

9.6. CodeGen

(*
Project: COMS S4115, SimpliCty Compiler
Filename: src/codegen.ml
Authors: - Ruil Gu, rg2970
- Adam Hadar, anh2130
- Zachary Moffitt, znm2104
- Suzanna Schmeelk, ss4648
Purpose: * Translates semantically checked SimpliCty AST to LLVM IR
* Functions for printing the AST
Modified: 2016-08-11
*)
(*: Make sure to read the OCaml version of the tutorial
http://1llvm.org/docs/tutorial/index.html
Detailed documentation on the OCaml LLVM library:
http://1lvm.moe/
http://1lvm.moe/ocaml/
*)
module L = Llvm
module A = Ast
module StringMap = Map.Make (String)

let translate (globals, externs, functions) =

let context = L.global context () in
let the module = L.create module context "SimpliCty"
and i32 t = L.i32 type context

and £32 t L.float type context
and il t = L.il type context

64 of 74

and void t = L.void type context in

let ltype of typ = function
A.Int -> 132 t
A.Float -> £32 t

|
| A.Char -> 132 t
| A.String -> i32 t
| A.Bool -> il t
| A.Void -> void t
in
let primary decompose = function
A.IntLit (i) -> i
| A.BoolLit(b) -> if b then 1 else 0
| A.FloatLit(f) -> int of float f
| -> 0
and primary float decompose = function
A.IntLit (1) -> float of int i
| A.BoolLit(b) -> if b then 1.0 else 0.0
| A.FloatLit (f) -> £
(I -> 0.0
in

(* Store memory ¥*)
let store primitive addr typ' value builder =
L.build store (L.const int typ' (if List.length value <> 0 then primary decompose
(List.hd value)
else 0)
) addr builder
and store array idx addr index typ' value builder =

let i = [|L.const int i32 t index|]

and v' = L.const_int typ' (if List.length value <> 0 then primary decompose (List.hd
value)

else 0)

in

let addr' = L.build in bounds gep addr i "storeArrIdx" builder in

L.build store v' addr' builder
and store float primitive addr typ' value builder =
L.build store (L.const float typ' (if List.length value <> 0
then primary float decompose (List.hd value)
else 0.0)
) addr builder
and copy_array size old_addr new_addr builder =
let rec copy idx idx =(match idx with

-1 -> 0
>
let idx' = [|L.const int i32 t idx|] in

let idx ptr n = L.build in bounds gep new_addr idx' "newArr" builder
and idx ptr o = L.build in bounds gep old addr idx' "oldArr" builder
in
let val old = L.build load idx ptr o "oldArrIdx" builder in
ignore (L.build store val old idx ptr n builder); copy idx (idx-1)
) in copy idx (size-1)

in

(* Declare each global variable; remember its value in a map *)
(*TODO-ADAM: global scoped arrays*)
let global vars =

let global var m (typ, name, decl, size list, values) =

let typ' = ltype of typ typ in

let init val v =

(match typ with

A.Float -> L.const float typ' (if List.length values <> 0 then

primary float decompose v else 0.0)

65 of 74

| -> L.const_int typ' (if List.length values <> 0 then primary decompose v

else 0)

)

in

let init = (match decl with

A.Primitive -> init val (List.hd values)

| A.Array -> L.const array typ' (Array.of list (List.map init val values))
) in

let addr = L.define global name init the module in
StringMap.add name (addr, decl, size list) m

in

List.fold left global var StringMap.empty globals in

(* Declare putchar (), which the putchar built-in function will call *)
let putchar t = L.function type i32 t [| i32 t |] in
let putchar func = L.declare function "putchar" putchar t the module in

(* Define each function (arguments and return type) so we can call it *)
(*L.pointer type (ltype of typ t)*)
let param type (typ, ,decl,) =
(match decl with
A.Primitive -> ltype of typ typ
| A.Array -> L.pointer type (ltype of typ typ)
)
in
let function decls =
let function decl m fdecl =

let name = fdecl.A.fname
and formal types = Array.of list (List.map param type fdecl.A.formals)
in

let ftype = L.function type (ltype of typ fdecl.A.typ) formal types in
StringMap.add name (L.define function name ftype the module, fdecl) m in
List.fold left function decl StringMap.empty functions in

let extern decls = List.fold left (fun ed e ->
{ A.typ = e.A.e_typ; A.fname = e.A.e fname; A.formals = e.A.e formals;
A.locals = []; A.body = [] } :: ed)
[] externs
in

let function decls =
let function decl m fdecl =
let name = fdecl.A.fname
and formal types =

Array.of list (List.map param type fdecl.A.formals)

in let ftype = L.function type (ltype of typ fdecl.A.typ) formal types in
StringMap.add name (L.declare function name ftype the module, fdecl) m in
List.fold left function decl function decls extern decls in

(* Fill in the body of the given function *)
let build function body fdecl =
let (the_ function,) = StringMap.find fdecl.A.fname function decls in

let builder = L.builder_ at_end context (L.entry block the_ function) in

(* Construct the function's "locals": formal arguments and locally
declared variables. Allocate each on the stack, initialize their
value, if appropriate, and remember their values in the "locals" map *)
let local vars =
let add formal m (typ, name, decl, size list) p =
L.set _value name name p;
let typ' = ltype of typ typ in
(match decl with
A.Primitive ->
let addr = L.build alloca typ' name builder in
ignore (L.build store p addr builder); StringMap.add name (addr,decl,size list) m

66 of 74

| A.Array ->
let full size = List.fold left (fun i s -> i*s) 1 size list in
if full size <> 0 then

let size' = L.const_int i32 t full size in

let addr = L.build array alloca typ' size' name builder in

ignore (copy_array full size p addr builder); StringMap.add name
(addr,decl,size list) m

else

StringMap.add name (p,decl,size list) m

)

in

let add local m (typ, name, decl, size list, values) =

let typ' = ltype of typ typ in

let addr = (match decl with

A.Primitive -> L.build alloca typ'

| A.Array ->
let full size = List.fold left (fun i s -> i*s) 1 size list in
let size' = L.const_int i32_t full size in

L.build array alloca typ' size') name builder in
(match decl with
A.Primitive -> (match typ with
A.Float -> ignore(store float primitive addr typ' values builder)
| _ =-> Jignore(store primitive addr typ' values builder))
| A.Array ->
ignore (List.fold left (fun index vals ->
ignore (store_array idx addr index typ' [_vals] builder);index+1l) 0 values)
); StringMap.add name (addr,decl,size list) m
in
let formals = List.fold left2 add formal StringMap.empty fdecl.A.formals
(Array.to list (L.params the function)) in
List.fold left add local formals fdecl.A.locals in

(* Return the value for a variable or formal argument *)
let lookup addr n =

(fun (a,_,) -> a)

(try StringMap.find n local vars

with Not found -> StringMap.find n global vars)

and lookup decl n =

(fun (_,b,) -> b)

(Ery StringMap.find n local vars

with Not found -> StringMap.find n global vars)

and lookup size n =

let (_,_,c) =

(try StringMap.find n local vars

with Not found -> StringMap.find n global vars)

in ¢

in

(*Construct code for lvalues; return value pointed to*)

let primary builder = function

A.IntLit i -> ([L.const_int i32 t 1i] , A.Primitive, [0], 132 _t)

| A.FloatLit £ -> ([L.const float £32 t f] , A.Primitive, [O0],
£32_t)

| A.CharLit ¢ -> ([L.const int 132 t (int of char c)] , A.Primitive, [O0],
i32 t)

| A.BoolLit b -> ([L.const int il t (if b then 1 else 0)] , A.Primitive, [O0],
il t)

| A.Lvalue (A.Id(s)) =3

let addr = lookup_addr s and decl = lookup decl s and size list = lookup size s

in

(match decl with

A.Primitive -> ([L.build load addr "1lv" builder], decl, size list, 132 t)
| A.Array -> ([addr], decl, size list, i32 t))

in

67 of 74

(* Construct code for an expression; return its value *)
let rec expr builder = function

A.Primary p -> primary builder p

| A.ArrLit lp —->

let list primary = List.fold left (fun 1i p ->

let (p', , ,) = expr builder p in
(List.hd p')::1i
) [1 1p in

(list primary, A.Array, [List.length list primary], i32 t)
| A.Lvarr (A.Id(lv), e list)->

let 1lv' = lookup addr 1lv

and decl = lookup_decl 1lv

and size = lookup size 1lv

(*TODO-ADAM: throwing away values¥*)

and pos_list = List.map (fun e ->
let (e', , ,) = expr builder e in
List.hd e’

) e list

in

lee "’ = {

if List.length size = 2 then

let mul = L.build mul (List.hd pos_list) (L.const_int 132 t (List.nth size
1)) "mult" builder in

L.build add mul (List.nth pos list 1) "add" builder

else if List.length size = 1 then List.hd pos list

else L.const int i32 t 0)

in
(*let addr = L.build in bounds gep 1lv' [|L.const int i32 t 0|] "arrPtr" builder in
let addr' = L.build in bounds gep addr [|e'|] "arrIdx" builder in¥*)
let addr' = L.build gep 1lv' [|e''|] "arrIdx" builder in
([L.build load addr' "idxIn" builder],decl, [0], 132 t)
| A.Noexpr -> ([L.const_int i32 t 0], A.Primitive, [0], 132 t)
| A.Binop (el, op, e2) ->
let el' =
let (tl, , ,t2) = expr builder el in

((List.hd tl1),t2)
(*match (expr builder el) with
(c ,A.Primitive, ,el type) -> (c, el type)

I @ ,_,_pel_type) => (L.const ptrtoint (List.hd p) (i32 t), el type)
*)and e2' =
let(tl, , ,t2) = expr builder e2 in
((List.hd tl1),t2) (*match (expr builder e2) with
(c,A.Primitive, ,e2 type) -> (c, e2 type)
| (p,_, ,e2 type) -> (L.const inttoptr (List.hd p) (i32 t), e2 type)
*)in
let flot = £32 t and iont = 132 t and ff = £32 t in
let (el', e2') = (match (snd el', snd e2') with
ff, £32 t -> ((fst el' , ff) , (fst e2' , £32 t))

| 132 t, £32 t -> ((L.const sitofp (fst el') £32 t, £32 t), (fst e2' ,
£32 t))
| £32_t, i32_t -> ((fst el', flot), (L.const sitofp (fst e2') £32 t, £f32 t))
|, _ =-> ((fst el', iont), (fst e2', iont))
) in
(match snd el', snd e2' with
£ff, f£32_t ->

[(match op with

(
A.Add -> L.build fadd
| A.Sub -> L.build fsub
| A.Mult -> L.build fmul
| A.Div -> L.build fdiv
| A.Mod -> L.build frem
| A.And -> L.build and
| A.Or -> L.build or
| A.Equal -> L.build fcmp L.Fcmp.Ueq

68 of 74

| A.Neg -> L.build fcmp L.Fcmp.Une

| A.Less -> L.build fcmp L.Fcmp.Ult

| A.Leg -> L.build fcmp L.Fcmp.Ule

| A.Greater -> L.build fcmp L.Fcmp.Ugt

| A.Geg -> L.build fcmp L.Fcmp.Uge)

(fst el') (fst e2') "tmp" builder], A.Primitive, [0], £32 t)

, ->
[(match op with

(

A.Add -> L.build add

| A.Sub -> L.build sub

| A.Mult -> L.build mul

| A.Div -> L.build sdiv

| A.Mod -> L.build srem

| A.And -> L.build and

| A.Or -> L.build or

| A.Equal -> L.build icmp L.Icmp.Eq

| A.Neg -> L.build icmp L.Icmp.Ne

| A.Less -> L.build icmp L.Icmp.Slt
| A.Leg -> L.build icmp L.Icmp.Sle
| A.Greater -> L.build icmp L.Icmp.Sgt

| A.Geg -> L.build icmp L.Icmp.Sge)
(fst el') (fst e2') "tmp" builder], A.Primitive, [0], £32 t)

)
| A.Unop(op, e 1lv) ->
(*TODO-ADAM: Semantic checking should make sure e 1lv is an 1lv*)
let (e', , ,typ) = expr builder e lv in
let e'' = (List.hd e') in
([(match op with
A.Neg -> L.build neg
| A.Not -> L.build not) e'' "unop" builder], A.Primitive, [0], typ)
| A.Crement (opDir, op, e 1lv) ->
(*TODO-ADAM: Semantic checking should make sure e 1lv is an 1lv*)
(match opDir with
A.Pre -> expr builder (A.Assign(e lv, (match op with

A.PlusPlus -> A.AssnAdd

| A.MinusMinus -> A.AssnSub), (A.Primary (A.IntLit 1))))
| A.Post ->

let (value,decl, ,typ) = expr builder e 1lv in

ignore (expr builder (A.Crement (A.Pre, op, e 1lv))); (value, decl, [0], typ)

)
| A.Assign (e_lv, op, e) ->
(*TODO-ADAM: Allow array assignment*)
(*TODO-ADAM: Semantic checking should make sure e 1lv is an 1lv*)
let (addr,decl,size) = (match e lv with
A.Lvarr (A.Id(lvInner), elInner list) ->
let 1vI' = lookup addr lvInner
and lvdecl = lookup decl lvInner
and lvsize = lookup size lvInner
(*TODO-ADAM: throwing away values¥*)
and pos list = List.map (fun e->
let (e', , ,) = expr builder e in
(List.hd e")
) eInner list in
let eI'' = (
if List.length lvsize = 2 then
let mul = L.build mul (List.hd pos list) (L.const int 132 t (List.nth lvsize
1)) "mult" builder in
L.build add mul (List.nth pos list 1) "add" builder
else if List.length lvsize = 1 then List.hd pos list
else L.const _int i32 t 0
)in
(*let addrIn = L.build in bounds gep 1lvI' [|L.const int i32 t 0|] "arrPtr"
builder in
*) (L.build in bounds gep 1lvI' [|L.const int i32 t 0; eI''|] "arrIdx" builder,
A.Primitive, [0])

69 of 74

| A.Primary(A.Lvalue(A.Id(s))) ->
(lookup addr s, lookup decl s, lookup size s)
| ->
(*TODO-ADAM: Semantic checking should catch this trash¥*)
let trash = L.const_inttoptr (L.const_int i32 t 0) (L.pointer type 132 _t) in
(L.build in bounds gep trash [|L.const int i32 t 0|] "trash" builder,
A.Primitive, [01])
)
in
let full size = List.hd size in
let eval = (match op with
A.AssnReg -> expr builder e
A.AssnAdd -> expr builder (A.Binop (e 1lv,
A.AssnSub -> expr builder (A.Binop(e lv,
A.AssnMult -> expr builder (A.Binop (e lv,
(
(

| .Add, e))
|

|

| A.AssnDiv -> expr builder (A.Binop(e lv,

|

)

o SlY), e))
Mult, e))
.Div, e))
.Mod, e))

i i

A.AssnMod -> expr builder (A.Binop(e lv,
in
(*TODO-ADAM: throwing away values¥*)
(*let (eval', ,) = eval in¥)
(match decl with
A.Primitive ->
let eval' = match eval with (e, , ,)-> List.hd e in
ignore (L.build store eval' addr builder)
| A.Array ->
let (eval', ,siz,typT) = eval in
let full siz = List.hd siz in
if List.length eval' = 1 then
ignore (copy array full size (List.hd eval') addr builder)
else
let arrLitAddr = L.build_array_alloca typT (L.const_int i32 t full siz)
"arrLit" builder in
ignore (List.fold left (fun index vals ->
let 1 = [|L.const int i32 t index|] in
let arrLitIdx = L.build in bounds gep arrLitAddr i "ArrLitIdx" builder
in
ignore (L.build store vals arrLitIdx builder); index+1)

0 eval'); ignore(copy array full size arrLitAddr addr builder)
); eval
| A.Call ("putchar", [e]) —->
(*TODO-ADAM: throwing away values¥*)
let (actual, , ,) = expr builder e in
let actual' = List.hd actual in
([L.build call putchar func [|actual'|] "putchar" builder], A.Primitive, [0], 132 _t)
| A.Call (f, act) ->
let (fdef, fdecl) = StringMap.find f function decls in
let actuals = List.rev (List.map (fun a ->
match expr builder a with (p, , ,)->List.hd p) (List.rev act)) in
let result = (match fdecl.A.typ with
A.Void -> ""
| -> f ~ " result") in

(* TODO-ADAM: convert fdecl.A.typ to A.decl ¥*)

([L.build call fdef (Array.of list actuals) result builder], A.Primitive, [O],
ltype of typ fdecl.A.typ)

in

(* Invoke "f builder" if the current block doesn't already

have a terminal (e.g., a branch). *)

let add terminal builder f =

match L.block terminator (L.insertion block builder) with
Some -> ()

| None -> ignore (f builder) in

(* Build 1llvm code for function statements; return the builder for the statement's
successor *)

70 of 74

(*let dummy bb = L.append block context "dummy.toremove.block" the function in

let break builder = dummy bb and continue builder = dummy bb in%*)

let rec stmt (builder, break bb, cont bb) = function

A.Block sl —>

List.fold left stmt (builder, break bb, cont bb) sl

| A.Expr e —>

ignore (expr builder e); (builder, break bb, cont bb)

| A.Break ->

ignore (add_terminal builder (L.build br break bb));

let new block = L.append block context "after.break" the function in

let builder = L.builder at end context new block in (builder, break bb, cont bb)

| A.Continue ->

ignore (add terminal builder (L.build br cont bb));

let new block = L.append block context "after.cont" the function in

let builder = L.builder at end context new block in (builder, break bb, cont bb)

| A.Return e ->

ignore (match fdecl.A.typ with

A.Void -> L.build ret void builder

(*TODO-ADAM: return array*)

(*TODO-ADAM: throwing away value*)

[-> L.build ret (match expr builder e with (p, , ,)->List.hd p) builder);
(builder, break bb, cont bb)

| A.If (predicate, then stmt, else stmt) ->

(*TODO-ADAM: throwing away value*)

let (bool val, , ,) = expr builder predicate in

let bool val' = List.hd bool val in
let if merge bb = L.append block context "if.else.merge" the function in

let if then bb = L.append block context "if.then" the function in
let b = L.builder at end context if then bb in

let (templ, ,) = stmt (b, break bb, cont bb) then stmt in
ignore (add terminal templ (L.build br if merge bb));

let if else bb = L.append block context "if.else" the function in
let b = L.builder at end context if else bb in
let (templ, ,) = stmt (b, break bb, cont bb) else stmt in

ignore (add terminal templ (L.build br if merge bb));

ignore (L.build cond br bool val' if then bb if else bb builder);
((L.builder at end context if merge bb), break bb, cont bb)

| A.While (predicate, body) ->

let while pred bb = L.append block context "while.cmp.block" the function in
ignore (L.build br while pred bb builder);

let while body bb = L.append block context "while.body" the function in

let while merge bb = L.append block context "while.merge.block" the function in
let break builder = while merge bb and continue builder = while pred bb in

let b = L.builder_at_end context while body bb in

let (templ, ,) = stmt (b, break builder, continue builder) body in

ignore (add_terminal templ (L.build br while pred bb));

(*1f (L.fold left instrs ~f:(s->is_terminator s) ~init:() templ) (*instr_ opcode*)
then{

ignore (add_terminal templ (L.build br while pred bb));
}
else{
ignore (add terminal templ (L.build br while pred bb));
1)
let pred builder = L.builder at end context while pred bb in
(*TODO-ADAM: throwing away value*)
let bool val = match expr pred builder predicate with (p, , ,)->List.hd p in
ignore (L.build cond br bool val while body bb while merge bb pred builder);
(*ignore (L.replace all uses with (L.build br dummy bb) (L.build br
while merge bb));*)
((L.builder at end context while merge bb), break builder, continue builder)
| A.For (el, e2, e3, body) ->
stmt (builder, break bb, cont bb)

71 0of 74

(A.Block [A.Expr el ; A.While (e2, A.Block [body ; A.Expr e3]1) 1)
in
(* Build 1llvm code for each statement in a function *)
let dummy bb = L.append block context "dummy.toremove.block" the function in
let break builder = dummy bb and continue builder = dummy bb in
let (builder, ,) = (stmt (builder, break builder, continue builder) (A.Block
fdecl.A.body))
in
(*let builder = L.builder at end context dummy bb in
let rec vist bb add terminals = fold left blocks (L.block terminator x) in
visit bb add terminals the function*)
(* Add a return if the last basic block is at the end *)
add terminal builder (match fdecl.A.typ with
A.Void -> L.build ret void
(*TODO-ADAM: return array*)
| £ -> L.build ret (L.const int (ltype of typ t) 0));
ignore (L.builder at end context dummy bb);
ignore (L.block terminator dummy bb);
ignore (L.delete block dummy bb);
in

List.iter build function body functions;
the module

9.7 GitLog

10. Appendix - Asana Project Log

A B c D E F G H | J K
Task ID :Crealed At Completed At Last Modified Name Assignee Due Date :Tags Notes Projects Parent Task
15884004364935: 7/23/2016 7/23/2016 7/23/2016 Complete LRM anh2130 7f2l1f2[2|15|) simpliCty: Compiler
1688437683843% 7123/2016 7123/2016 7/23/2016 [Converted to project] Final Write Report : simpliCty: Compiler
15879427489715: 71222016 7/24/2016 Course Deadlines: : simpliCty: Compiler
15335051729?75: 712412016 7/26/2016 7/26/2016 Internal demo "Hello World” 7126/2016, simpliCty: Compiler
158858904465421 712412016 7/28/2016 7/28/2016 Graham Demo "Hello World" (Clicl 7!'28.#‘2015: simpliCty: Compiler
15885890445543: 7124/2016 8/6/2016 8/6/2016 HW 2 B.f3.f2015: simpliCty: Compiler
15335890445544: 712412016 8/10/2016 8/10/2016 Final Exam EHU!EUWE: simpliCty: Compiler
15885590445543: 712412016 8/11/2016 §/11/2016 Final Demo simpliCty 6/11/2016, simpliCty: Compiler
168868904465441 7/24/2016 8/11/2016 §/11/2016 Final Report simpliCty 81’111‘2015: simpliCty: Compiler
15879427’489715: T122/2016 7/24/2016 Team Meetings: : simpliCty: Compiler
158793339:15035: T/22/2016 7/23/2016 T/23/2016 Meet to discuss plan and scheduli 7f23.f2[]15: simpliCty: Compiler

]
1

! '

| Each developer <

] http://llvm.org/do

15883778925116: 712312016 712412016 7/24/2016 "Hello World + L Zachary Moffitt 712412016, simpliCty: Compiler
1588589044654 11 7/24/2016 7/26/2016 7/26/2016 Internal Demo + Zachary Moffitt TF'26f2[]15: simpliCty: Compiler
15995928753435: 7/26/2016 712712016 7i27/2016 Internal Demo + Zachary Moffitt E.f2.f2[]15: simpliCty: Compiler
15888051729775: 7/24/2016 7/28/2016 7/28/2016 Prepare Graham Demo + Group M 7f28.f2015: talk print. structs simpliCty: Compiler
!] ' Demo- uop, bop,)
15886051729775, 7/24/2016 8/1/2016 8/1/2016 Internal Due + Master Merge + Fi 7F30f2[]16: Discuss: structs simpliCty: Compiler

H ' Demo front-end:

| ! Discuss LLVM: &

1
168860517297761
T

1
15865051?29776:

15885[]51?297?6:
15886051729776
15885[]51?297??:
160655?4254882:
15?15989[]97351:
15886051729777:
158?92518?5556:
158843?6838438:

158?92618?655?:
158?92618?555?:
15879261676557

30
31
32
33
34
35
36
37
38
39
40
I
2
43
a4
45
46
47
48

158792618765571
15385[]51?29??7:
15886051729781:
15886051729770:
168860517297741
15886735792537:
15886051729770:
15996475847?1[]:
158860517297711
15175531219255:
151?5531219255:
15886051729771:
15886738792636!
15886051729771:
15886051729784:
15886051729784:
158860517297721
15886[]51729?78:
15385[]51?29??2:
15385[]51?29??3:
1588441645568421
1‘58_8441 5455943:

158844164559411
15884415455942:
15884415455542:
15884415455942:

15884415455942:
1
1
1
1

15888738792635:
158?9251875554:
155792618765541
15879251875555:
15879251876555:

1
15879251575555:
15884004364935:
15879261876555!
15884004364935:
15884004354935:
15886738792637!

71242016

7/24/2016

7/24/2016
712472016
712472016
712712016
8/11/2016
7/24/2016
712212016
7/23/2016

712212016
7/22/2016
712212016

7/22/2016
7/24/2016
7/24/2016
T/24/2016
T/24/2016
T/24/2016
T/24/2016
7/26/2016
7/24/2016
7/30/2016
7/30/2016
742412016
T/24/2016
T/24/2016
T/24/2016
T/24/2016
7/24/2016
7/24/2016
7/24/2016
7/24/2016
T/23/2016

T/23/2016
7/23/2016
T/23/2016
7/23/2016

7/23/2016

7/24/2016
T/22/2016
7/22/2016
T/22/2016
7/22/2016

T/22/2016
7/23/2016
Ti23/2016
7/23/12016
T/23/2016
T/24/2016

72 of 74

1 Demo front-end:
! Discuss LLVM: ¢
8/1/2016 8/1/2016 Internal Due + Master Merge + Up 7.5314’2015: simpliCty: Compiler
: Demo Front-End
8/3/2016 8/3/2016 Intemal Due + M Zachary Moffitt 8/2/2016, structs, scan, cz simpliCty: Compiler
! LLWM Alignment
8/5/2016 8/6/2016 TA Meeting + Internal Discussion | 8/4/2016, simpliCty: Compiler
8/6/2016 8/6/2016 Internal Discussi Zachary Moffitt 8!5;’2015: Test case feedbz simpliCty: Compiler
8/8/2016 8/8/2016 Internal Discussion Due ltems + IV EFT-’QEHE: Parser should be simpliCty: Compiler
8/11/2016 8/11/2016 Internal Demo + Zachary Moffitt 8/9/20161 simpliCty: Compiler
8/11/2016 Internal Demo + Zachary Moffitt 8#150015: simpliCty: Compiler
8/11/2016 8/11/2016 Prepare Demo + Report for Evenin 8.1’11.1’2015: simpliCty: Compiler
7/23/2016 Project Scoping: TFZSFZEHE: simpliCty: Compiler
7/24/2016 7/24/2016 Style Guide 7/23/20161 http:/fwww.cs.co simpliCty: Compiler
: Manager - Timely
]
! Language Guru -
E System Architec
: Tester - Test plar
7/25/2016 7/25/2016 Define team mer Zachary Moffitt 7/24/20161 simpliCty: Compiler
TI2772016 T/27i2016 Assign functions and dev work Tl’24|’2015: simpliCty: Compiler
T25/2016 T/25/2016 Set deliverable d Suzanna Schme 7;*24.1’2015: simpliCty: Compiler
7/25/2016 7/25/2016 Set deliverable d Suzanna Schme ?1’24F2015: simpliCty: Compiler
T/24/2016 7/24/2016 Reformat microc Suzanna Schme 71’24{2015: simpliCty: Compiler
Ti25/2016 7/25/2016 Lingering Enviror Zachary Moffitt Ti25(20161 simpliCty: Compiler
7/24/2016 Goals/Milestones {Authority Person): : simpliCty: Compiler
7/24/2016 7/24/2016 Initial Test Cases Suzanna Schme 7.f24f2018: simpliCty: Compiler
7/24/2016 7/24/2016 uop Test Cases anh2130 : simpliCty: Compiler
T/28/2016 7/28/2016 Hello World Zachary Moffitt 712820161 simpliCty: Compiler
8/5/2016 8/5/2016 passing arrays tc anh2130 TB[]FZD‘IS: simpliCty: Compiler
8/5/2016 8/5/2016 Validate bop initi Zachary Moffitt 74’3[]"2015: simpliCty: Compiler
8/8/2016 8/8/2016 bop on floats wai Suzanna Schme 8;’9{2015: simpliCty: Compiler
7/30/2016 Validate bop on ¢ Zachary Moffitt 8/5/20161 simpliCty: Compiler
8/6/2016 struct declaratior Rui Gu 8;’71’2018: simpliCty: Compiler
7/24/2016 Semantic error ¢ Zachary Moffitt : simpliCty: Compiler
8/1/2016 scan statement | Rui Gu 8.1’51’2018: simpliCty: Compiler
8/1/2016 return statement anh2130 8/5/20161 simpliCty: Compiler
8/6/2016 8/6/2016 main functionalit: Zachary Moffitt Tf31f2018: simpliCty: Compiler
8/8/2016 8/8/2016 casting Suzanna Schme 8F11|’201E: simpliCty: Compiler
8/6/2016 8/6/2016 "extern” keyword Rui Gu 84’2#2016: simpliCty: Compiler
7/24/2016 Parser Completed 8/7/20161 simpliCty: Compiler
T/24/2016 Test Cases Pass Entirely 8;’7-’2015: simpliCty: Compiler
7/23/2016 Interesting program: : simpliCty: Compiler
8.!’1.{'27[11%, 8/1/2016 write "interesting program” in the lanouace "SimoliCiv" simpliCtv: Comupiler
7/23/2016 Testing: : simpliCty: Compiler
7/24/2016 7/24/2016 reformat microc.) anh2130 7.’241’2018: simpliCty: Compiler
7124/2016 7/24/2016 reformat current * Suzanna Schme 7124/20161 simpliCty: Compiler
712612016 7/26/2016 redesign testall.¢ Suzanna Schme 7!26"2018: simpliCty: Compiler
: 1. Change error 1
' 2. Make test fold
7/26/2016 7/26/2016 redesign regress Suzanna Schme 7/28-’2016: 3. Change error | simpliCty: Compiler
1 Changes?
! 1
! 2.
7/26/2016 7/26/2016 Makefile 1 simpliCty: Compiler
7/23/2016 Parser: 7’24-’2016: simpliCty: Compiler
7/26/2016 7/26/2016 Gather requirements for parser 7.1241’2018: simpliCty: Compiler
7/28/2016 7/28/2016 Implement parser 7124/2016! simpliCty: Compiler
7i23/2016 Print: 7.’251’2018: simpliCty: Compiler
' putchar
712412016 7/24/2016 Gather requirements for print 7.'241’2015: simpliCty: Compiler
712412016 7/24/2016 print_string -> OCaml -> LLVM 1 Gather requirements for print
7126/2016 7/26/2016 Implementation Steps 7124;’2015: simpliCty: Compiler
7/23/2016 Static test | Implementation Steps
7/23/2016 Dynamic variable printing : Implementation Steps
7/24/2016 Print Zachary Moffitt 1 simpliCty: Compiler

89
70
7|

i
T4
T
76

78
9
80
81

83

85

a7

89
S0
91
/4
93

95

97

100
101
102
103
104
105
106
107
108

108
110
M

"2
n3
114
ns
116
"7
118
119

1

1
15856738792635:
15855738792635:
15879251875555:
15883795446940:
15853795446941:
15130910305069:
15883795446941:
1588379544694 11
15883795446941:
15885890446545:
15883795446939:
1588379544694 01
15883795446939:
1817663121925?:
15886051729781:
158858904465471
18503055859159:
15884376838440:
15886051729771:
15886051729779:

15B86051729779,
1588805172978[]:
15885890445545:
158858904465451
15885890445545:
15865690445546:
1513093812746?:
161309381274681
15130938127467:
15130910305071:

1
16130938127467!
16130936127468!
168867387926391
15863795446937,
1688377692515
15886738792639!
161309103050711
16472283547519,
16472283547519)!
1588379544693

158837954469371

15883795446940!
168837954469361
15883795446937,
16883796446937!
15883795446938]
168837964469381
16883795446936,1
16883795446936|
15863795446936¢
1688350 11742771
1588350174275,
16883795446042]
158837954459421
168835011742771
1588350 1174277,
16883795446944!
15683795445944!
168835011742771
15884416455936,
16884416455936|
15885890446545]
1588

7/24/2016
7/24/2016
7/22/2016
7/23/2016
712312016
71282016
7123/2016
712312016
712312016
712412016
712312016
712312016
712312016
713012016
712412016
7/24/2016

6/8/2016
71232016
7/24/2016
7/24/2016

7/2412016
7/2412016
7/2412016
712412016
712412016
7/2412016
7/28/2016
7/28/2016
7/28/2016
7/28/2016

7/28/2016
7/28/2016
T/24/2016
T/23/2016
7/23/2016
712412016
7/28/2016

8/7/2016

8/7/2016
7/23/2016
7/23/2016

7/23/2016
7/23/2016
7/23/2016
7/23/2016
7/23/2016
712312016
7/23/2016
712312016
7/23/2016
7/23/2016
7/23/2016
7/23/2016
712312016
7/23/2016
7/23/2016
1/23/2016
7/23/2016
71232016
7/23/2016
712312016
7/24/2016
12 6

T/25/2016
T/26/2016

7/30/2016

8/6/2016
8/6/2016

T/28/2016
8/6/2016
8/8/2016

6/8/2016

8/8/2016
8/8/2016
8/8/2016
8/8/2016

8/5/2016
8/7/2016
8/6/2016

7126/2016

712612016

71262016

7126/2016

8/6/2016
8/6/2016
7/23/2016
7/23/2016
7/23/2016
7/23/2016
7/23/2016
7/23/2016
7/23/2016
7/23/2016
7/23/2016
7/23/2016
7/23/2016
8/6/2016
7/23/2016

7/30/2016 putchar Rui Gu 7!26F201EI
7/26/2016 Array - see array Suzanna Schmeelk 1
7/28/2016 Validation of prin’ Rui Gu SWZ'mE:
71232016 Scan: !
7/30/2016 implement getch Rui Gu 8.F2f2015:
7/28/2016 scan test cases Rui Gu 8/2/20161
B/6/2016 Extem: |
8/6/2016 pull external file + Rui Gu 8.1’8.#2015:
8/6/2016 link compiled file Rui Gu 8.1"8.*’2015:
7/24/2016 Make sure includes do not clash]
712312016 New types: !
7/28/2016 char !
8/6/2016 float declaration Suzanna Schmeelk :
8/8/2016 float bop Suzanna Schme 8/8/20161
8/8/2016 struct declaratior Rui Gu 8!11.@015:
8/8/2016 Compare [int.boc Suzanna Schme 8;’8!’2015:
8/8/2016 semantic checki Zachary Moffitt 8!’11!’2015:
7/24/2016 Type Casting:]
7/25/2016 print - string Rui Gu 7!31f2015:
7/28/2016 print - char 7!30.’2015:
8/6/2016 Print - variable (s Zachary Moffitt Tf31|"2[]15:
7/25/2016 Print - floats Zachary Moffitt 7131120161
8/8/2016 bool-=int (not allowed) :
8/8/2016 int->float Suzanna Schmeelk :
8/8/2016 bool->fioat (not allowed) :
8/8/2016 char-=int Suzanna Schmeelk 1
7/28/2016 String: EMI"Z[]IS:
8/5/2016 fix array paramet anh2130 7F29f2[]15:
8/7/2016 allow esxpr (or jus anh2130 Bf?l"2[]1ﬁ:
8/7/2016 Pass array to fur anh2130 BFSI’2[]1G:
8/7/2016 allow explicit arr: anh2130 Bf9f2018:
8/6/2016 make string wrag Zachary Moffitt Bﬁp"2018:
8/7/2016 String "Hello Wo Zachary Moffitt :
Ti23/2016 array: :
7i23/2016 !
7/26/2016 array design 7*’25;"2015:
8/7/2016 Return array fron anh2130 BP’QI"2[]1S:
8/7/2016 multidimensional anh2130 BP’QI"2[]1G:
8/7/2016 array to array as anh2130 8/9/20161
7/26/2016 array declaration Suzanna Schme 7#’25;"2015:
7/26/2016 array assignmen anh2130 7051"2015:
7/26/2016 array item acces Suzanna Schme 712712016,
8/3/2016 array concatenat Zachary Moffitt :
7/23/2016 Structure: :
8/6/2016 structure type de Rui Gu !
8/6/2016 structure variable Rui Gu :
8/6/2016 structure item ac Rui Gu :
7i23/2016 Mew loop statements: :
8/5/2016 continue Suzanna Schme 8/5/20161
8/5/2016 break Suzanna Schme 8!5.’2016:
7/23/2016 MNew Binary math operations: 7;’24!‘2018:
7/23/2016 % - modulo anh2130 Tf24.F2015:
772372016 implement 1
712312016 test :
7/2372016 Mew Unary operations: T-’24f2016:
712312016 ++ anh2130 712411’2015:
772372016 implement 1
7/23/2016 test :
712312016 — anh2130 7;’24*'2015:
7/23/2016 implement :
7/23/2016 test !
8/6/2016 Ensure preceder anh2130 8.f3f2016:

7/23/2016 New

Add putchar as &

73 of 74

simpliCty: Compiler

simpliCty: Compiler

simpliCty: Compiler
simpliCty: Compiler
simpliCty: Compiler
simpliCty: Compiler
simpliCty: Compiler
simpliCty: Compiler
simpliCty: Compiler
simpliCty: Compiler
simpliCty: Compiler
simpliCty: Compiler
simpliCty: Compiler
simpliCty: Compiler
simpliCty: Compiler
Valid, error, cast simpliCty: Compiler

simpliCty: Compiler

simpliCty: Compiler

simpliCty: Compiler

simpliCty: Compiler

simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCty:
completed, but n simpliCty:
There are now tw simpliCty:

simpliCty:
simpliCty:
simpliCty:
simpliCty:

simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCty:

Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler

Compiler
Compiler
Compiler
Compiler
array:
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler

simpliCty: Compiler

simpliCty: Compiler
simpliCty: Compiler

simpliCty: Compiler
simpliCty: Compiler

simpliCty: Compiler

simpliCty: Compiler
simpliCty: Compiler

simpliCty: Compiler
simpliCty: Compiler

simpliCty: Compiler

% - modulo
% - modulo

simpliCty: Compiler
simpliCty: Compiler

++
++

simpliCty: Compiler

simpliCty: Compiler
simoliCtv: Combiler

133
134
135
136
137

139

150
151
152
153
154

154
155
156
157

159

158337954£5943]
158835011742791
15884416455937,
16334416455937
15834416455937"
168835011742791
15584416455037,
1588441645937
1583350174279
155644164550381
15834416455938,
16883501174279)
15854416455938!
168844164559381
15885890446546,
15885890446541!
15885890446547!
1586858904465481
15885300446548,
16835690446544!
158368004£5541]
162039794476101

162[]3979447610:
15885890446545:
16[][]53[]51?2180:
1617553121925?:
161766312192581
16503085659180:
16130910305072:
15130910305072:
165030656591611
16503055559151:
16130910305071:
16503055559150:
16503065659160!

7/23/2016
1/23/2016
7/23/2016
7/23/2016
71232016
7/23/2016
7/23/2016
7/23/2016
1/23/2016
71232016
1/23/2016
71232016
7/23/2016
7/23/2016
7/24/2016
7/24/2016
7/24/2016
1/24/2016
7/24/2016
1/24/2016
72442016
8112016

8/1/2016
7/24/2016
7/26/2016
7/30/2016
7/30/2016

8/8/2016
T/28/2016
7/28/2016

8/8/2016

8/8/2016
7/28/2016

8/8/2016

8/8/2016

71232016
7/23/2016
T/23/2016
7/23/2016

T/23/2016
7/23/2016
T/23/2016
7/23/2016
71232016
7/23/2016
71232016
7/23/2016
7/23/2016

8/5/2016
7/26/2016

8/8/2016

7130/2016

Ti23/2016 test

7i23/2016 = anh2130
7/23/2016 implement

Ti23/2016 test

7/23/2016
Ti23/2016 *=
7/23/2016 implement

Ti23/2016 test

7/23/2016 /= anh2130

7/23/2016 implement

7/23/2016 test

712312016 %= anh2130

T/23/2016 implement

7/23/2016 test

7/24/2016 Ensure precedence correct
7/24/2016 LLVM:

8/5/2016 int vs float (acce| Suzanna Schmeelk
T/26/2016 print sys calls

7/24/2016 scan sys calls

7/24/2016 Semantic Checking:

7/24/2016 Ensure test cases pass
8/3/2016 Error handlina Zacharv Moffitt

anh2130

8/3/2016 Error handling Zachary Moffitt
7/24/2016 Design test cases

T/26/2016 Add extra test cases to make language more robus

7/30/2016 Sys Calls:

8/8/2016 implementation design
8/8/2016 implementation

7/28/2016 Compiler:

7/30/2016 Pass in file Rui Gu
8/8/2016 clean comments in code
8/8/2016 pretty print code
8/8/2016 Test Cases:

8/8/2016 Fail Tests
8/8/2016 Pass Tests

]
]
]
1

i
1

1
8/7/2016,
8/11/2016!

LLVM:

simpliCty:

simpliCty:

simpliCty:

simpliCty:

simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCtv:

simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCty:
simpliCty:

74 of 74

+=

Compiler

Compiler

Compiler

Compiler
9=
%=
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Comoiler

Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler

