
Macaw
August 10, 2016

Team Members

● William Hom

● Joseph Baker

● Christopher Chang

● Yi Jian

Introduction

Macaw is a mathematical calculation language with native support for matrix
data types.

● Strongly typed
● Imperative
● Supports if/else/for/while flow controls
● Functions
● Operator overloading

Project Plan

7/11

Complete our project
proposal

7/17

Finish LRM

7/20

Finalize Scanner,
Parser, and AST

7/27

Compile “Hello World”
into LLVM

8/1

Semantic checking,
SAST generation,
Codegen, finished

8/5

Features, test suite
complete

Language Overview / Tutorial

A Macaw program is written as series of functions and imperative statements.
Function definitions and variable declarations must be made prior to
referencing them.

#Does not compile #Compiles
foo();
void foo() {

print(“Hello World!”);
}

Language Overview / Tutorial

Data Types

number - Floating point numbers for arithmetic operations.

string - Character strings used for printing statements to the console. Can be stored in variables or used as constants.

matrix - Two dimensional arrays of numbers.
● Built-in support - initialization, access, insertion
● Standard library functions implemented.
● Accessed using [row, column] or [flattened] indexing.

○ [flattened] indexing - counted across columns, then rows.

Language Overview / Tutorial

More interesting
features

● Matrix Support

● Operator Overloading

● Function Overloading

● Statements are valid at the root
(outside the functions)

Some things our language can do

Interlude Math Demos

Architecture

Scanner/Parser/AST:

● Scanner reads in source files and tokenizes them.
● Parser processes tokens into abstract syntax tree.
● Abstract syntax tree represents Macaw program

Semantic Checker (aka Evaluator):

● Receives AST and checks validity of semantics and
syntax
○ Declarations, Types

● Create structure for the list of statements and
functions.

SAST:

● Result of the semantic transformation of the AST
● Passed to codegen for code emission

Codegen (aka Compilator):

● Takes SAST and emits LLVM code.
● No logic or decision-making (except resolving data

types); mechanically translates SAST to LLVM IR.

Testing Process

● Language reference manual used to devise test cases and scenarios.
○ Both success scenarios and expected failure scenarios
○ Write unit tests that should pass/fail.

● System architects implemented features, wrote test programs.
● Testers broke down test programs into component unit tests.
● “Test all” script implemented to run regressions.

Lessons Learned -- Our most important
takeaways

● Chris: Complex project, project management, testing
● Yi: Learned about the language design process, testing to break the

language
● William: Matrix time management, planning language architecture
● Joseph: TDD, Semantic checking/transforming is surprisingly powerful

Live Demo -- The coolest
things we can do

Questions?

