Macaw

August 10, 20176

e William Hom

e Joseph Baker

Team Members S AR ——

e Yidian

Introduction

Macaw is a mathematical calculation language with native support for matrix
data types.

Strongly typed

Imperative

Supports if/else/for/while flow controls
Functions

Operator overloading

Project Plan

Complete our project Semantic checking,
proposal Finalize Scanner, SAST generation,
Parser and AST Codegen, finished

ﬁqﬁyﬁp

Features, test suite
complete

Finish LRM Compile “Hello World”
into LLVM

Language Overview / Tutorial

A Macaw program is written as series of functions and imperative statements.

Function definitions and variable declarations must be made prior to
referencing them.

#Does not compile #Compiles

[foo("Hello World");

void foo (string s){

print(s);
void foo (string s){

print(s); .
} foo("Hello World");

Language Overview / Tutorial

Data Types
number - Floating point numbers for arithmetic operations.

string - Character strings used for printing statements to the console. Can be stored in variables or used as constants.

matrix - Two dimensional arrays of numbers.
e Built-in support - initialization, access, insertion
e Standard library functions implemented.
e Accessed using [row, column] or [flattened] indexing.
o [flattened] indexing - counted across columns, then rows.

Language Overview / Tutorial

testing additive expressions, subtraction
string concatenation is destructive

matrix a <- [1,2,3;4,5,6];

string foo(string s) {
return strcat("Hello ", s); matrix b <- [1,2,3;4,5,6];

}

matrix ¢ <- a - b;
print(foo("World!")); #prints 'Hello World!"

print(c[5]); # prints 0.00

More interesting

features

Matrix Support
Operator Overloading
Function Overloading

Statements are valid at the root
(outside the functions)

Some things our language can do

global variable modifications are visible in functions

mixed variables in overloads & arinbles taie pas el DyAVELG

number a <- 7;

n .
number operator + (string s, number b) { e e

print(b); X <= X * 5;
print(s);

printnl("value of a in function: "); print(a);
printnl("value of x: "); print(x);
return 0;
} return 2;
}

number a <— "Hello World!" + 6; number b <~ foo(a);

rint(a);
P (a); printnl("a is unchanged: "); print(a);
. . printnl("return value of foo: "); print(b
#prints the following:

7 #prints the following:
#6.000 : #value of a in function: 7.004¢
#Hello World! #value of x: 35.000
#0.000 #a is unchanged: 7.000
#return value of foo: 2.000

Interlude Math Demos

Architecture

Scanner/Parser/AST:

° Scanner reads in source files and tokenizes them.
e Parser processes tokens into abstract syntax tree.
e Abstract syntax tree represents Macaw program

Semantic Checker (aka Evaluator):

e Receives AST and checks validity of semantics and
syntax
o Declarations, Types
e Create structure for the list of statements and
functions.

SAST:

° Result of the semantic transformation of the AST
e Passed to codegen for code emission

Codegen (aka Compilator):

e Takes SAST and emits LLVM code.
e No logic or decision-making (except resolving data
types); mechanically translates SAST to LLVM IR.

Testing Process

e Language reference manual used to devise test cases and scenarios.
o Both success scenarios and expected failure scenarios
o Write unit tests that should pass/fail.
System architects implemented features, wrote test programs.
Testers broke down test programs into component unit tests.
“Test all” script implemented to run regressions.

Lessons Learned -- Our most important

takeaways

e Chris: Complex project, project management, testing

e Yi: Learned about the language design process, testing to break the
language

e William: Matrix time management, planning language architecture

e Joseph: TDD, Semantic checking/transforming is surprisingly powerful

Live Demo -- The coolest
things we can do

Questions?

