Andrew Feather - af2849
Mat Federer - mrf2157
PLT W4115

7/11/2016

Project Proposal
I. Language Description:

We plan to implement a scripting language language focused on financial calculations
and economic projections to make the jobs of financial professionals and economic researchers
a bit easier.

The basic language will focus on making it easy to read in spreadsheets, manipulate
columns and rows of data, perform common calculations, plot the data on a chart, and write
back to a new spreadsheet. The hope is that the language can be used by financial and
economic-research focused shops to easily construct customized programs to input and output
the information they need from their most common data input sources. They will also be able to
quickly generate any information they need with built-in functions for common calculations and
the customizable ‘function’ object. Shops can use these capabilities to build their own, specific
calculations.

Our language will yield agile capabilities for financial professionals and economic
researchers to build custom programs that can scrape data into a short program, run the
calculations they need and output whatever charts, spreadsheets or other documents they
would like to return.

Array creation, use and concatenation will also be made intuitive and easy, much in the
same way it works in Matlab. The compiler will easily handle the creation of 2d arrays simply by
the user giving ‘[J[I' at the end of the instantiated array’s name. However, the goal of the
standard library will be to eliminate the need to create arrays manually as much as possible by
making simple array operations, such as reading in columns of data easy via basic function
calls.

Il Purpose:

The language will quickly build programs to run customized financial and economics
calculations from common financial documents.

A standard library will be included with built-in objects (spreadsheet, account, company,
earnings_report) that allow users to easily read in spreadsheets with a list of defaults and
prompts that make it very easy to read in and write values to and from spreadsheets and use
common operations on objects such as accounts, companies and earnings reports.

Economics calculations will be supported by an economics library. This library will
redefine functions for basic calls like demand and price. Larger formulas like Income Elasticity or
Cross-Price Elasticity of Demand must be user defined. Our goal is that by defining functions for



only basic economics variables, our language will accelerate fiscal calculations while avoiding
the Standard Library Syndrome.

The most common programs will involve reading in information from common types of
earnings reports and outputting formatted information with user-specified calculations. The
language and its libraries can also be utilized to append information to an existing report.
Ideally, the language will easily be used to manipulate a company’s internal database of
hundreds or thousands of reports. Our intention is that such natural interaction will help expedite
decision making and assure the preservation of long term data.

1. Parts and Function:

Integers/Floating Point Integers: Same notation as C
Strings: Denoted by singles quotes or double-quotes.
- You can offset quotes within quotations by using /”\. When using double quotes, single
quotes will print with no need for any extra characters.
- Printing objects works similar to python “This is the name of an object:
{}*.objects_to_print(this)
Arrays: Our language will allow for the easy manipulation of arrays, much in the same way
Matlab implements its array structures. Both one dimensional and two dimensional arrays will be
available, accessible via ‘name[]’ and ‘name[][]’ respectively.
Comments: Same as C - single-line: “//”, multi-line: “/* */”
Objects: Objects require the keyword obj and require at least two attributes. These are similar to
classes in Java.
Functions: Functions use the keyword “func” and require the user to indent, as with the rest of
the code.

Iv. Sample Source Code:
A. Using Standard Library
Import standard_library

Func days_sales_in_inventory(inventory_turnover) =
Return 365/inventory_turnover

data = File(bank_spreadsheet.xls)
label_column = get_label_column() //requests label column from user
temp_company = (name="Pfizer”)

company_earnings_report = earnings_report(label_column, data)



/lpulls data based on the label column input by the user above

temp_Assets_label = ‘Current assets:’
temp_Liabilities_label = ‘Current liabilities:’
temp_Equity_label = “Shareholders’ equity:”
/l[double quotes allow you to ignore apostrophes

temp_company.add_earnings_report(id=1, month="January”,company_earnings_report,
assets_label=temp_Assets_label, liablities_label=temp _Liabilities_label,
equity_label=temp_Equity label)

print(“Days’ sales in Inventory
{}’.objects_to_print(days_sales_in_inventory(temp_company.inventory_turnover))

New_spreadsheet = spreadsheet(“new_spreadsheet.xlIs”) // creates a new spreadsheet
New_spreadsheet.write_common_earnings_report_values(temp_company.earnings_rep
ort(1))

/*this writes all common earnings report calculations to an output spreadsheet using the
earnings report with id=1*/

B. Using Economics Library

/* Decision making program printing the Quarter 1 to Quarter 2 own-price elasticity
calculation to the user */

Import standard_library
Import econ_library as econ

data1 = File(bank_spreadsheet.xls)

temp_company = (name="Pfizer”)

prevquarter_demandinfo = get_label_column() // requests label column from user for last
quarter column with demand info

prevquarter_priceinfo = get_label_column() // price info

thisquarter_demandinfo = get_label_column() // requests label column from user for
current quarter column with demand info

thisquarter_priceinfo = get_label_column() // price info

prevquarter_reportD = earnings_report(prevquarter_demandinfo, data)
/Ipulls data for previous quarter demand



prevquarter_reportP = earnings_report(lastquarter_priceinfo, data)
/Iprevious quarter price

thisquarter_reportP = earnings_report(thisquarter_demandinfo, data)
/Ipulls data for current quarter demand

thisquarter_reportD = earnings_report(thisquarter_priceinfo, data)
/lcurrent quarter price

prev_demand = econ.demand(prevquarter_demandinfo)
/I econ.demand calls the demand function from the economics library

prev_price = econ.price(prevquarter_priceinfo)

/I econ.price call price function from the economics library
this_demand = econ.demand(thisquarter_demandinfo)
this_price = econ.price(thisquarter_priceinfo)

Func own_price_elasticity(prev_demand, prev_price, this_demand, this_price) =
return (((this_demand - prev_demand) / (this_price - prev_price)) * (this_price /
this_demand))

print(“Quarter 1 to Quarter 2 Own-price Elasticity: {}
”.objects_to_print(own_price_elasticity(prev_demand, prev_price, this_demand,
this_price))



