Language Reference Manual - simpliCity

Course: COMS S4115
Professor: Dr. Stephen Edwards
TA: Graham Gobieski

Date: July 20, 2016

Group members

Rui Gu - rg2970

Adam Hadar - anh2130
Zachary Moffitt - znm2104
Suzanna Schmeelk - ss4648

Table of Contents

Introduction

Lexical Conventions
Identifiers
Comments

Whitespace

Keywords
Constants

Integer constants
Character constants
Floating constants
Strings
Objects, types. and conversion
Fundamental types
Derived types
‘Ivalues’
Conversions
Expressions
Syntax notation
Primary expressions
Unary operators
Multiplicative operators
Additive operators
Relational operators
Equality operators
Comparison operators
Assignment operators
Concatenation operator

Declarations
Type specifiers
Declarators
Structure Declarations
Statements
Expression statement
Compound statement
Conditional statement
While statement
For statement
Break statement
Continue statement
Return statement
Print statement
Scan statement
Program definitions
Function definition
Structure definition
Scope and Preprocessor rules
File inclusion
Token replacement
Appendix - Context Free Grammar
Expressions
Declarations
Statements
Function Definitions

Preprocessor

2 0f 17

Introduction

The simpliCity language is a simplified version of C which was developed by Kernighan and
Ritchie. The simpliCity language contains a subset of C grammar but with a strict type system.
The language uses LLVM as the backend to produce bytecode.

The simpliCity language operates best with programs that need to be Turing complete and can
be defined using strict type casting and only stack-based memory management, which
decreases runtime errors. The C language domain is for number crunching and embedded
systems. SimpliCity programs will operate in the same domain as C with the exception that our
compiler supports only a limited features of C.

Lexical Conventions

1.

Identifiers

An identifier is any sequence of alphanumeric characters, where the first character must
be alphabetic. The _character is the only non-alphanumeric symbol accepted in an
identifier, and it is read as an alphabetic character.

Comments

Comments are introduced with the /* character string, and terminate with the */
character string. All characters within these indicators are ignored. Comments do not
nest.

Whitespace

Whitespace is basically ignored by the compiler; any combination of whitespace
characters will be interpreted as one whitespace character.

Keywords

The following identifier are reserved for various uses, and cannot be used in any other
way than how they are specified (later in this manual):

int e start
chr ® return
sci ® Dbreak
txt ® continue
bool e if

true ® clse
false e while
struct e for

3of 17

® print
® scan

Constants

1.

Integer constants

An integer constant is a sequence of digits. It is taken to be a decimal number.

Character constants

A character constant is 1 or 2 characters enclosed in single quotes, * and . To
represent a single quote character as a character constant, it must be preceded by a
backslash, e.g. \ . The backslash character is used as an escape for several other
special character constants, as shown in this table:

Backslash A\
Single quote \’
Double quote \”
New line \n
End of string / null byte \O

Floating constants

A floating constant is made up of an integer part (written the same as an integer
constant), a decimal point (the . character), and a fractional part (written the same as an
integer constant). To be recognized as a floating constant, it needs to have at least the
decimal point, and either the integer part or the fractional part. A floating constant is
single-precision.

Strings

A string is a set of characters surrounded by double quotes, ™ and . A string is
considered in the back end as an array of characters, which is held in memory as a
contiguous block of data. To represent the double-quote character within a string, it must
be preceded with the escape character as specified for character constants, e.g. \”. The
other special characters specified there should be written in the same method.

Objects, types, and conversion

1.

Fundamental types

SimpliCty supports four fundamental types of objects - integers, characters,
single-precision floating-point numbers, and booleans:

4 of 17

e characters (from here on labelled chr), are representative of the ASCII character
set; they are the rightmost 7 bits of a single byte. They can be manipulated as if
they are 1 byte 2’s complement numbers (the MSB is a 0).
integers (int) are 16 bit (2 byte) 2’s complement numbers.
single-precision numbers (sci) are 32 bit (4 byte) numbers represented with 24
bits of precision, 8 bits for an exponent, and 1 bit for a sign.

e booleans (boo1l) are 8 bit (1 byte) representations of true or false statements.
The reserved keywords true and false are its two possible values.

2. Derived types

There are three types which can be constructed from the fundamental types:

e arrays - a set of objects that are all the same type. A string is a type of array (an

array of chr) which has the special label txt.

e structures - a set of objects that may not be all the same type

e functions - a subroutine that returns an object of a specific type
These derived types are generally recursive. There can be an array of arrays, an array of
structures, a structure of arrays, a structures of structures, and a function can return an
array or a structure. Functions cannot return functions.

3. ‘lvalues’

‘Ivalues’ are expressions that refer to objects. An identifier is an Ivalue. When the code is
being parsed, expressions like a = bora = 3 willinterpret a as being an Ivalue. b is
also an Ivalue in this example.

4. Conversions

SimpliCty is a strongly typed language, and so it does no type conversion whatsoever.
Any attempt to do so natively will result in a compiler error. To convert one type to
another one must use an external library.

Expressions

Precedence of expressions is represented in this manual in the order of their section numbers.
For example, all expressions from subsection 3 (unary operators) will always take precedence
over any expression in subsection 4 (multiplicative operators), or subsection 5 (additive
operators). It will always be ignored before expressions from subsection 2 (primary
expressions), however.

Expressions defined within the same subsection have undefined precedence over each other.
The compiler will arbitrarily compute them, in whatever order.

50f 17

1. Syntax notation

Syntactic categories are indicated by text in the font Cambria, and in italics. Literal words
or symbols are written in Courier New, with a light gray background. The

subscript characters

opt Mark a category that is optional.

Primary expressions

Primary expressions group left-to-right.

a.

identifier

An identifier is a primary expression, but only if it has been properly declared.
Upon declaration, its type must be specified. However, if the type of the identifier
is “array of type T”, then the value of the identifier expression is an internal
pointer to the first object in the array. The user will not be able to manipulate the
address directly, as pointers are not available to be manipulated.

constant

Decimal, character, boolean, or floating point constants are all primary
expressions. It's type is int for decimal integers, chr for character, sci for
floating point, and boo1 for boolean.

string

A string is a primary expression, whose type is ‘array of chr’.

(expression)

Parenthesized expressions are primary expressions who would be evaluated
identically to the same expression without parentheses. This is useful to avoid
ambiguity in writing expressions.

primary-lvalue [expression]

This expression defines a reference to a specific value within an array. Itis a
valid primary expression when the left expression resolves to a variable of type
array, and when the right expression (within brackets) resolves to an int which
is not larger than the size of the array.

primary-lvalue —-> member-of-structure

This expression is a valid primary expression when the Ivalue is referring to a
structure, and the member of the structure referred exists within that structure.

3. Unary operators

Unary operations group right-to-left.

a.

b.

- expression

The “mathematical negation” expression results in the negative of the given
expression of the same type. It only operates on int, chr, and sci. The output
of this operation is the same type as the inner expression.

| expression

6 of 17

The “logical negation” expression results in t rue if the expression resolves to 0,
and false if the expression resolves to a non-zero value. It only operates on
bool. The output of this operation is a bool.

++ Ivalue-expression

The “increment” expression increments by 1 the object referred to by the Ivalue,
as long as itis of type int or chr. The final expression returns this incremented
value, of the same type as the Ivalue object.

—— Ivalue-expression

The “decrement” expression operates similarly to “increment” but it subtracts 1.

4. Multiplicative operators

Both multiplicative operators and the following subsection (additive operators) group
left-to-right, in order to emulate math in common usage.

a.

expression * expression

The * operator expresses multiplication. Both expressions on either side must be
of the same valid type, int or sci. The result of this operation is the same type
as its two operands.

expression / expression

The / operator expresses division. Its type requirements are the same as
multiplication. Note that on int/int division, this operation throws away the
remainder to keep its output int.

expression % expression

The % operator expresses the modulo operation. Its type requirements are the
same as the other multiplicative operators.

5. Additive operators

a.

expression + expression

The + operator expresses addition. Its type requirements are the same as the
multiplicative operators; both operands must be of the same type (both int, both
chr, or both sci), and it returns a value of the same type as its operands.
expression — expression

The - operator expresses subtraction. Its type requirements are the same as
addition and the multiplicative operators.

6. Relational operators

Relational operators (as well as the two following section ‘Equality’ and ‘Comparison’)
resolve its two operands into an output that is a bool. These three sections all group

left-to-right.
a. expression < expression
b. expression <= expression
C. expression >= expression
d. expression > expression

7 of 17

These operators each evaluate to true if the relation is true, and false
otherwise. Both operands must be of the same type. Types int, chr, sci, and
bool are accepted. The output of these operations is a bool.

7. Equality operators
a. expression == expression
b. expression ! = expression
These operators are equivalent in practice to the relational operators, but they
always have lower precedence.

8. Comparison operators

SimpliCty does not support bitwise operations. As such, the comparison operators do not
need to be a double character.
a. expression & expression
Returns true if both operands are nonzero, otherwise false. If the first
expression evaluates to false, the second expression is not evaluated. All
primitive types are accepted as operands, but a boo1 is outputted.
b. expression | expression
Returns true if both or either operands are nonzero, otherwise false. If the
first expression evaluates to true, the second expression is not evaluated. All
primitive types are accepted as operands, but a boo1 is outputted.

9. Assignment operators

Assignment operations group right-to-left. They all require an Ivalue as the left operand.
The value returned is the value that is placed in the object referred to by the Ivalue. The
object referred to by the Ivalue must be declared before it can be assigned.

a. lvalue = expression
Both the object referred to by the Ivalue, and the evaluated expression, must
have the same type.
lvalue += expression
lvalue —= expression
lvalue *= expression
lvalue /= expression
The behavior of these four operations resolve to (for example +=) 1value =
lvalue + expression. The mathematical operation detailed in the symbol
evaluates that operation on the object referred to by the Ivalue and the
expression, and then that value is assigned to the Ivalue. The types of of the
Ivalue and the expression must match, as detailed in section 4 and 5.

© 200

10. Concatenation operator
a. expressionl . expression2

8 of 17

The concatenation operator . takes as operands two expressions that resolve to
arrays of the same type, and outputs a single array of the same type. For
example, if expression1 was declared as int al[5],where al[5] =
{0;1;2;3;4} and expression2 was declared as int a2[3],where a2 [3] =
{5;6;7};,then the operation al.a2 would resolve to the array
{0;1;2;3;4;5;6;7}. If the first expression is made up of elements of type
‘array of bool’, then the second expression must also be made up of elements
of type ‘array of bool’.

Declarations

Declarations are used within functions to declare instances of designated type. Declarations
have the following form
declaration:
decl-specifier declarator-list,, ;
The declarator list contains all the identifiers waiting to be declared. For decl-specifier, only one
specifier is allowed for each declaration.

decl-specifiers:
type-specifier
Note that a variable cannot be declared and assigned a value to in the same statement.

1. Type specifiers

The only types that can be specified are the primitive types, the special character array
txt, and data structures.
type-specifier:

int

chr

sci

bool

txt

struct-specifier

2. Declarators

A declarator list is a list of declarators
declarator-list:
declarator , declarator-list
declarator
Where a declarator is a variable name, and optionally a definition of an array. A

declarator list must exist for all types, except for data structures, where they are optional.
declarator:

identifier
declarator [constant]
(declarator)

9 of 17

Together with the associated type specifiers, each declarator yields an instance of the
indicated type. A declarator with the form of declarator [constant] indicates we are
declaring an instance of array, with size constant. If the type-specifier was txt, the size
of the array does not need to be specified. An array may be constructed from one of the
primitive types, from a structure, or from another array (to generate a multidimensional
array).

3. Structure Declarations
A data structure specifies a new composite type, which is composed of one or more
primitive types, array, or other previously specified data structures.
struct-specifier:
struct { type-decl-list }
struct identifier { type-decl-list }
The type-decl-list is a sequence of type declarations for the members of the structure.
type-declaration is just normal declaration with type-specifier and declarator.

As stated above, the declarator list is optional for structure declaration. A structure
declaration can be specified for one or multiple variables in one statement or,
alternatively, just the type can be declared, with variables of that type declared later.

Note that the first instance of the struct specifier, struct { type-decl-list },
requires a declarator list, while the second does not.

SimpliCty does not allow self-referential structures. The declaration for structures is
otherwise similar to the way one declares a variable. However, the declarations within
the type-decl-list should always have names as well.

type-decl-list:
type-declaration
type-declaration type-decl-list
Statements
1. Expression statement
An expression statement has the form:

expression ;

Expression statements are assignments or function calls.
2. Compound statement

Write multiple expression statements, that will be evaluated one after the other, like this:
{ stat-decl-list }
stat-decl-list will be more clearly defined in the section “Program definitions” but for now
it will be defined as:
stat-decl-list:
statement statement-list

10 of 17

statement

Conditional statement

The two types of conditional statements are:

if (expression) statement

if (expression) statement else statement
If the expression surrounded by parentheses evaluates to true (it must be a bool),
then the first statement is evaluated.
In the second instance of a conditional, the second statement is evaluated if the
expression evaluated to £alse. Never are both statements evaluated.

. While statement

The while statement is expressed as such:

while (expression) statement
The expression is evaluated - if it evaluates to a true then the statement is evaluated.
The expression must be a bool. Control flow then jumps back to the expression and
re-evaluated. This process is repeated until the expression evaluates to false.

For statement

The for statement is expressed thusly:
for (expressionl ; expressionZ ; expression3) statement
But this statement is equivalent to:
expressionl ;
while (expressionZ)
{
statement
expression3 ;
}
There must be an expression in each of the three positions.

Break statement

The statement

break ;
Makes the latest while or for statement terminate prematurely. Control flow moves to
the statement following the terminated statement.

Continue statement

The statement

continue ;
Can only be used on while or for statements, in order to prematurely jump back to the
evaluation of the potentially false expression.

11 of 17

8. Return statement

The statements

return ;

return (expression) ;
Move control flow back to the caller of the function within which these statements have
been expressed. In the first type of statement no value is returned. In the second, the
expression must evaluate to the type specified in the function definition.

9. Print statement

The statement
print (expression) ;
Prints the expression to the command line. The expression must resolve to a txt.

10. Scan statement

The statement

scan () ;
Pulls the next character types by the user in the command line until the a new line
character or null terminator is received. This statement outputs a chr.

Program definitions

A simpliCty program consists of series of external definitions. An external definition is either a
function definition or a global data structure definition.
program:
external-definition program
external-definition
external-definition:
function-definition
struct-definition

1. Function definition

A function definition is defined as
function-definition:
type-specifier function-declarator function-body

Where the type specifier details what the function returns, the function body details the
statements that will be evaluated when the function is called, and the function
declaration
function-declarator:
declarator (parameter-list,
start ()

Pf)

12 of 17

Details the name of the function (declarator), and the series of parameters that are
passed to the function as inputs. The special case of the function declaration, with the
keyword start, is used to define the entry point for control flow. It is equivalent to the
“main” function keyword in the regular C Language. start does not have any argument
inputs.
A parameter list is defined as
parameter-list:
identifier , parameter-list
identifier
Since the parameter list is optional, a function does not necessarily need any inputs.
A function body has the form
function-body:
type-decl-list function-statement
function-body:
{ stat-decl-list }
stat-decl-list:
statement-declaration stat-decl-list
statement-declaration
statement-declaration:
statement
declaration
stat-decl-list was earlier defined as only a list of statements. Its full definition allows it to
be a list, of arbitrary length, of either statements or declarations. At least one of the
statements in a function must be a “return” statement, as the function needs to at some
point return control flow to its parent function (or terminate the program).

Once the specially defined function start “returns”, a program terminates.

2. Structure definition

A struct definition is defined as
struct-definition:

struct-specifier ;
A structure is defined here in the same manner as previously defined in the declarations
section, although it does not allow for the declaration of variables of this new data
structure type. A structure may be defined in this scope when it needs to be defined as
an input or a return value for one or multiple functions. A structure defined within a
function will be undefined (as out of scope) once the function returns control flow.

Scope and Preprocessor rules

Variables declared within a function are undefined when the function returns. Structures defined
within a function become undefined when the function returns. If the user wants a structure to

13 of 17

be available to more than one function, it must be defined at the level of other functions (as
specified in the previous section, “Program definitions”).

1. File inclusion

The source text of a simpliCty program does not need to be all in one file. There are
special preprocessor rules that allow the importing of the contents of an external file at
the start of the file, before compilation.

include ™ filename"”
Where the filename is a relative path to the external file.

2. Token replacement

Any string of characters can within a source file can be replaced with another set of
characters using the token replacement rule:
define identifier token-string
The identifier is not the string to be replaced, and the token-string is the new set of
characters to replace it.
The compiler is not responsible for any errors that result from this replacement.
The programmer must be attentive.

14 of 17

Appendix - Context Free Grammar

1. Expressions

expression:
primary
- expression
| expression
++ lvalue
-— lvalue
primary:
identifier
constant
string
(expression)
primary [expression]
primary -> identifier
lvalue:
identifier
primary [expression]
lvalue -> identifier
(lvalue)
expression-list:
expression , expression-list
expression
The primary expression operators
0 1 =>
Have highest priority and group left-to-right. The unary operators
= U B ==
Have priority below the primary operators but above any binary operators, and group
right-to-left. The binary operators

/%
H B
< <= >= >
—— | =
& |
Group left or right, with priority decreasing. Assignment operators
= 4= —= *= [=

Have the next priority, and group right-to-left. The concatenation operation

Has the lowest priority, and groups left-to-right.

15 of 17

2. Declarations

declaration:

type-specifier declarator-list,,, ;
type-specifier:

int

chr

sci

bool

txt

struct-specifier
struct-specifier:

struct { type-decl-list }

struct identifier { type-decl-list }
declarator-list:

declarator , declarator-list

declarator
declarator:

identifier

declarator [constant]

(declarator)
type-decl-list:

declaration type-decl-list

declaration

3. Statements

statement:
expression ;
{ stat-decl-list }
if (expression) statement

if (expression) statement else statement

while (expression) statement

for (expression ; expression ; expression) statement

break ;

continue ;

return ;

return (expression) ;
print (expression) ;

scan ;

16 of 17

4. Function Definitions

program:
external-definition program
external-definition
external-definition:
function-definition
struct-definition
function-definition:
type-specifier,,, function-declarator function-body
function-declarator:
declarator (parameter-list,
start ()
parameter-list:
identifier , parameter-list
identifier
function-body:
{ stat-decl-list }
stat-decl-list:
statement-declaration stat-decl-list
statement-declaration
statement-declaration:
statement
declaration
struct-definition:
struct-specifier ;

Pf)

5. Preprocessor

include “ filename”
define identifier token-string

17 of 17

