SPY - Final Report

Simplified Python
A strongly typed, general purpose language inspired by Python
Sanil Shah (ss4924)

Chapter 1: Introduction
Chapter 2: Tutorial
Requirements
Usage Instructions
Python vs. SPY
Comments
Literals
Strings
Lists
Dictionaries
Functions
Conditionals
SPY Code Samples
Chapter 3: Language Reference Manual
Types
Primitive Types
Complex Types
Function Types
Type Declarations
Lexical Conventions
Comments
Lines
Whitespace
Indentation
Identifiers
Keywords
Separators
Literals
Operators
Arithmetic Operations
String Operations
Relational Operations
Comparison Operations
Assignment Operations
Logical Operations
List Operations
Dictionary Operations
Operator Precedence
Functions
Function declarations

Function invocation
Expressions
Blocks and Scope
Chapter 4: SPY Architecture
Architecture Overview
Architecture Diagram
Chapter 5: Test Plan
Chapter 6: Lessons Learned
Chapter 7: SPY Compiler Source Code
scanner.mll
ast.ml
parser.mly
utils.ml
library.ml
spy.ml
typechecker.ml
codegen.ml
runtests.ml (test runner modified from JSJS open source code)
Makefile

Chapter 1: Introduction

SPY is a strongly typed, easy to use language inspired by features from Python and functional languages
like OCaml and SML. The goal is to create a type-safe version language with functional elements that can
be used easily by Python programmers with a similar syntax that will compile down to Javascript. The
language is compiled down to Javascript to allow it to be easily run in a web environment. A lot of
functional programming languages (like LISP) can often have complicated syntax that is hard to
understand and unfamiliar to most programmers. Since Python is quickly becoming language of choice
for introductory programming classes, SPY aims at offering a familiar yet functional alternative to
first-time Python users and programmers who wish to dip their toes into functional programming. The
language will not have all the robust features of Python, but will contain a small subset that can be used
to create fairly robust algorithms. The language design aims at emphasizing type safety while minimizing
the number of keywords, keeping the syntax as similar to Python as possible.

Chapter 2: Tutorial

This section will explore the simple ways to use the SPY language. It will also explain differences between
SPY and Python to enable first time users to easily adapt to SPY syntax. Further it will explain how to use
the compiler to compiler a .spy file into a .js file.

Requirements

There are several software requirements for running the SPY compiler. Since the compiler is written in
Ocaml and compiles down to JS, both OCaml and node.js must be installed on the machine. Further
several ocaml core libraries are required as well such as core, ocamlfind and menhir which can all be
installed using the OCaml package manager, OPAM. node.js is used to run the compiled code and test if
the output is correct.

Usage Instructions

The compiler can be built by running "make" in the SPY directory. This will produce a "spy.out" file
that be run with a spy program as follows:

./spy.out example.spy

If example.spy is syntactically correct then this will produce an "out.js" file which can be run using the
node command as follow:

node ./out.js

This will print out the output of the program to stdout. If the program has syntax errors the compiler will
output the issues in the program which can then be fixed by the programmer.

Python vs. SPY

SPY is inspired by Python and the syntax is as close to Python syntax as possible. SPY is type safe but the
types will be inferred by the compiler so the language will not need special keywords to specify the
types. In fact, like Python there will be no explicit way to specify types, however type safety will be
ensured by the compiler once types are inferred.

Comments

Python

SPY

This is a

multi line comment

This is a single line comment

This is a single line comment

Multiple line comments aren't allowed.
Anything after a # symbol on a line will
be ignored and treated as a comment.

Literals
Python SPY
42 42
0.42 0.42
True true
False false
Strings
Python SPY

'Hello world!
"Hello world"
"Hello \n world"

"Hello" + "world"

Single quoted strings aren't allowed
"Hello world"

"Hello \n world" (escape special chars)
"Hello" ~ "world"

"Hello" + 5 Mixed type concat isn't allowed
Lists

Python SPY

[1, "hi", @.42] Mixed type lists are aren't allowed
[1, 2, 3] [1, 2, 3]

[1] + [2, 3] 1 :: [2, 3] (cons)

[1, 2] + [3, 4]

[1, 2] @ [3, 4] (append)

Dictionaries

Python

SPY

{"foo": 1, "bar":
{"foo": 1, "bar":

"baz"}
2}

Mixed value dictionaries aren't allowed
{"foo": 1, "bar": 2}

Functions

Blocks in Python are denoted by white-space (tabs or space characters). Instead, SPY will use the "end"

keyword to denote the end of a block, and white-space will be ignored just like any other programming

language. This will apply to conditionals as well as function definitions. New lines are used to determine
the end of an expression. All other white-space will be used purely for convenience and readability.

Python SPY
def add(x, y): add = lambda(x, y):
return x +y X +Yy
end
add = lambda x, y: x +y The function body must be on a newline.
Conditionals
Python SPY
if x < y: This isn't allowed in SPY. The else
return 42 construct is required.
if x < y: if x < y:
return 42 42
elif x > y: elif x > y:
return -42 -42
else: else:
return @ 0
end
SPY Code Samples

Euclid's GCD
gcd = lambda(a, b):
if a ==
a
elif a > b:
gcd(a - b, b)
else:
gcd(b - a, a)
end
end

Combines two lists into a list of lists
combine = lambda(x, y):
if len(x) != len(y) or len(x) == @:
[]
else:
[hd(x), hd(y)] :: combine(tl(x), tl(y))

Calling combine with incorrect arguments (compiler error)
a = combine(1, 2)

Calling combine correctly (returns [[1,3], [2,4]])
b = combine([1, 2], [3, 4])

Chapter 3: Language Reference Manual

This chapter covers the rules for the SPY language syntax and semantics. It describes ways in which the
language can be used and the behavior of the language when used in various ways.

Types

Types are dynamically inferred at runtime in Python and will similarly be inferred in SPY as well so that
they do not have to be explicitly specified. The inferred types are described here to make compiler

messages more understandable and in case explicit typing is necessary at any time in the future. The
words used to describe the types will be reserved as keywords.

Primitive Types

There are five primitive types in SPY.

1.

void: This is a special type used when expressions do not return a value. This is the case for
statements like print or file reading operations that may be supported. These expressions have
side effects (such as printing to stdout) but do not return a value and hence have a type void.
bool: This represents a logical value which can either be true or false. The keywords "true" and
"false" are reserved to represent literals of this type.

int: The int type is used to represent literals between +2/31 and -2731. Literals with no decimal
points or floating parts will be inferred as integers.

num: The num type is used to represent numbers containing a decimal part or an exponential
portion. Numbers like 0.42 or 1e5 will be inferred as floating point numbers.

string: The string type is used to represent literals containing text. It is a sequence of characters
encoded in the ASCII format. Each character occupies 16 bits and will follow in order from the
starting position which will contain the first character of the string. Strings will be inferred as any
sequence of ASCII characters between double quotes or based on the usage of the caret
operator.

Functions to allow casting between various types will be provided by the SPY language.

Complex Types

There are two complex types in SPY.

1.

list: The list data structure can be used to store a sequence of values. This can be useful when
keeping track of multiple primitives that need to be referred to repeatedly. It serves as a way to
express one or more related values together. Unlike Python, all elements of a list is SPY must
contain the same type of element. Lists can also contain other lists so long as every element list
contains the same type of elements.

dict: The dictionary data structure is another important feature of SPY and are similar to
dictionaries in Python. However unlike Python, all keys in the dictionary must be of the same
type as well as all the values. Keys and values may have different types but all the keys have to

be homogenous and all the values have to be homogenous. The type of the dictionary will be
inferred during initialization or when it is accessed.

Function Types

Like everything else in SPY, functions are expressions as well and evaluate to expressions. The type of a
function is represented by a list of types of its formal arguments and its return type which may be one of
the primitive or composite types, or a function type in itself..

Type Declarations

Explicit type declarations aren't permitted in SPY (just like Python). Assignment to variables is done by
specifying a valid identifier followed by the equals sign (" = ") followed by any valid expression. Rules for
valid identifiers are found below. Examples of assignments are shown here:

=1 # int

= 1.5 # float

= -0.00005 # float

= "cat" # string

true # bool

= [1, 2, 3, 4] # list(int)

= ["a", "b", "c", "d"] # list(string)

= {"cat": 1, "dog": 2} # dict(string, int)

= {"cat": [1], "dog": [2]} # dict(string, list(int))

H >0 MDD Q N T QD
1}

Lexical Conventions

The rules followed by the parser and the lexer to break the program into acceptable tokens are listed
below. The rules for syntax are very similar to Python with minor differences but are listed out in
completeness below to remove any ambiguity.

Comments

Only single line comments are allowed in SPY. Anything on a line following a "#" is considered a comment
and ignored by the compiled. Multi line comments are not supported in SPY.

This entire line is a comment

a = "cat # The rest of this line is a comment

Lines

Each line in SPY represents a separate expression (except for blocks which we will discuss later). Since
there is no way to delimit expressions (like a semicolon in JS or Java), each line will be treated as a
separate expression. SPY will recognize the linefeed (ASCII: "\n') as a line termination sequence.

Whitespace

All non line termination white-space characters can be used to separate tokens. This includes horizontal
tab ("\t'), form feed ("\f') and carriage return ('\r). The white-space characters will be used exclusively to
separate tokens and hold no other meaning.

Indentation

Unlike Python, SPY doesn't follow a strict indentation policy to represent code blocks. Instead the end of
a code block will be indicated using the "end" keyword provided in the language. This allows users to use
any indentation they want. The "end" keyword will be used to demarcate function definitions as well as
if-else blocks.

Identifiers

Identifiers are used to represent various entities in SPY and to store their values. All reserved SPY
keywords mentioned in the section below or types mentioned above cannot be valid identifiers. Further,
reserved JS keywords will not be valid identifiers either. Identifiers can be named starting with at least a
single lowercase letter, followed by any number of lowercase letters, uppercase letters, digits or
underscores. ldentifiers will not start with an uppercase letter, a digit or an underscore.

Identifier regular expression:

id = ['a’-"z"]["a’- - - I*

Valid Identifiers Invalid Identifiers

X X (cannot start with uppercase letters)
name 1stName (cannot start with a digit)
anglel name&age (invalid character)

last_name lambda (reserved SPY keyword)
dateOfBirth int (reserved SPY type)

Keywords

The below keywords are reserved and have special meaning in SPY. The are reserved for use by the
programming language itself and may not be used as names of identifiers elsewhere in the program.
They serve a special function and cannot be used to serve any other purpose. Keywords used by SPY are
listed below:

lambda, end, if, elif, else, hd, tl, keys, and, or, not, true, false

Separators

This is the list of characters that separate tokens other than white-space as mentioned above. These are
simple single characters that can be used to separate tokens and often have a special meaning when
used in specified format to represent lists or dictionary literals.

Character Name

(! Left paren
") Right paren
T Left square
T Right square
{' Left brace
'} Right brace
! Comma

Literals

Literals are used to represent values of primitive or composite types in SPY. There are six kinds of literals
as listed below.

1. Boolean literals: The bool type literals can be two values, "true" or "false" represented by the
ASCII characters that form the words. These are reserved keywords so they may not be used as
identifiers and are written without the surrounding quotes to signify the boolean literals.

bool = true | false

2. Numeric literals: Numeric literals represent values of the num type. These can be a sequence of
one or more digits starting with a non zero digit or a single zero. It can be used to represent
numbers between 0 and 2731. Further numeric literals can represent values of the float type.
They can be used to represent fractional or decimal numbers. Float literals have whole number
part followed by a dot followed by a fractional part. The whole number part can be defined by
the same rules as integer literals above. The dot is mandatory. The fractional part can be defined
as a sequence of any number of digits. Negative numeric literals will be created using the unary
operator for negation which will be covered later in this manual.

n=(['1-'9"]["e"-"9"]* |) | ([r1t-"9'1['e'-"9"]* |) [fe'-"9"]*

3. String literals: String literals are used to represent textual data. They are denoted by a sequence
of zero or more ASCII symbols enclosed in double quotes. Certain special characters are denoted
by escape sequences, which are a backslash followed by the special character. The following
escape sequences are supported to account for special characters like tabs, new lines, and

quotes: horizontal tab ("\t"), newline ("\n"), backslash ("\\"), double-quotes ("\"") and carriage

return ("\r").
string = ([11 [1*

4. List literals: List literals are used to represent values of the list type. They are denoted by a
sequence of zero or more comma separated expressions surrounded by square braces. The
square braces are required to specify a list literal. They may contain no elements in which case
the list is considered to be empty. Examples of valid list literals are provided above under list.

5. Dictionary literals: A dictionary literal is used to store pairs of related values. This is similar to a
map in other languages. It is denoted by a left brace ("{") followed by a list of zero or more
comma separated key-value pairs and ending with the right brace. ("}"). The braces are required
to specify a dictionary literal. The key-value pairs are denoted by an expression followed by a
colon (":") followed by another expression. The first expression represents the key while the
second expression represents the value. All keys must be of the same type and all values in the

dictionary but also be of the same type, keeping the dictionary consistent.

Operators

The following characters are used as operators in the language and carry a special meaning that is
described below. Their behavior is defined as part of the language and cannot be changed.

Character Name

"+ addition

t-t Subtraction or negation
T multiplication

A division

%' modulus

At string concatenation
Yot list insert

'@' list append

<! less than

‘=" less than or equal to
! greater than

'>=" greater than or equal to
‘=t assign

‘== equals

=t not equals

and logical and

or logical or

not logical negation

Operators in SPY may be unary or binary. There are only two unary operators (logical negations "not"
and arithmetic negation "-"). All other operators are binary and the types of operands that they may act
upon is defined below. Binary operators are used in the infix notation and are written between two
expressions that act as the operands.

Arithmetic Operations

Arithmetic operations only allow operands of type num. The five arithmetic operations are plus, minus,
multiply, divide and modulo. The minus sign can also be used as a unary operator to negate numbers.
The operands can be expressions so long as both expressions evaluate to literals of the num type. The
result of these operations is also a num type.

1. Plus: Add two values
1+ 2 # evaluates to 3
2. Minus: Subtract the second value from the first
3.0 - 1.5 # evaluates to 1.5
3. Multiply: Product of two values
5 * 2 # evaluates to 10
4. Divide: Divide the first value by the second
5.0 / 2.0 # evaluates to 2.5
5. Modulo: The remainder obtained when dividing the first value by the second
6 % 4 # evaluates to 2
6. Unary negation: The arithmetic negation of the given value

-3 # evaluates to -3

String Operations

There is only a single string operation. The caret ("A") symbol is used to concatenate two strings. Both
operands must be string literals or expressions that evaluate to string literals. The result of the
concatenation operation is also a string literal.

1. Concat: Combine the two strings into a single string
"cat" N "cat" # evaluates to "catcat"

Relational Operations

Relational operations require operands of either type num or string. The four relational operations are
greater than, greater than or equal to, less than and less than or equal to. The operands are expressions
that evaluate to literals of either num or string types or variables specified by identifiers of any of those
types. Both operands must be of the same type. For string types comparison is done based on the
ordering of the alphabet. The result type of these operations is of type bool (it may be either true or
false).

1. Lessthan: Is the first value strictly less than the second value
1 < 2 # evaluates to true

2. Less than equals: Is the first value less than or equal to the second value
3.0 <= 1.5 # evaluates to false

3. Greater than: Is the first value strictly greater than the second value

n "

"cat" > "cat # evaluates to false
4. Greater than equals: Is the first value greater than or equal to the second value

"cat" >= "cat" # evaluates to true

Comparison Operations

There are two types of comparison operations. These are equals ("==") and not equals ("!="). These can
be used with operands of any primitive or composite type. Once again both operands must be of the
same type. The result of these operations is also a boolean. Comparison for composite types is done by
structure (similar to python). This means that two lists will be equal if they contain the same elements in
the same order, and two dictionaries will be equal if they contain the same keys with the same value for
each key.

1. Equals: Is the first value logically, mathematically or structurally equal to the second value

"cat" == "cat" # evaluates to true

"cat" == "dog" # evaluates to false

3.0 == 3.0 # evaluates to true

3 == 4 # evaluates to false

[1, 2, 3] == [1, 2, 3] # evaluates to true

{1: "cat"} == {1: "dog"} # evaluates to false

2. Not equals: Are the two values logically, mathematically or structurally not equal

"cat" l= "cat" # evaluates to false
"cat" != "dog" # evaluates to true
3.0 != 3.0 # evaluates to false

3 I=4 # evaluates to true

[1, 2, 3] !'= [1, 2, 3] # evaluates to false
{1: "cat"} != {1: "dog"} # evaluates to true

Assignment Operations

The assignment operator ("=") is used to assign a value to an identifier. The value may be of any primary,
composite or function type. The identifier is on the left side of the "=" sign. The expression on the right
side is evaluated and then assigned to the identifier on the left side.

1. Assignment: Assign the value on the right to the identifier on the left

)]
1]

3+4 # a is assigned 7
b = "cat" # b is assigned "

cat

Logical Operations

There are three types of logical operations. These are logical and ("and"), logical or ("or") and logical
negation ("not"). These can be only be used with operands that are of the bool type. Any expression
used with these operators must evaluate to a bool literal. The resulting type of these operations is also a
bool type. The logical or and logical and operators are binary while the logical negation operator is unary.

1. Logical and: Are both the operands true. If not then this is false.

true and false # evaluates to false
true and true # evaluates to true

2. Logical or: Are either of the operands true. If not then this is false.

true or false # evaluates to true
false or false # evaluates to false

3. Logical negation: If the operand is true, this is false, if the operand is false, this is true.

not true # evaluates to false
not false # evaluates to true

List Operations

There are two types of list operations. These are cons ("::") and append ("@"). Both are binary operators
used with the infix notations. The result of both operations is a list type. Both operands for these
operations need to contain same type of elements. The correct usage for each is described below.

1. Cons: Adds the value on the left to the list on the right. The operand on the left must be of the
same type as the elements in the list. The operand on the right must be a list.

3 ::[2, 1] # evaluates to [3, 2, 1]
“cat" :: ["dog", "cow"] # evaluates to ["cat", "dog", "cow"

2. Append: Appends the two lists together. Both lists must have the same type of elements. Both
operands must be valid lists.

[3] @ [2, 1] # evaluates to [3, 2, 1]
[“dog", "cow"] @ ["cat"] # evaluates to ["dog", "cow", "cat"]

Dictionary Operations

There are three types of dictionary operations. This includes setting a value in a dictionary, getting a
value from the dictionary and getting all the keys in the dictionary. Dictionary operations are different
from all other operations in that they do not have a specific special character operator associated with
them. However they do have a special syntax to access elements in the dictionary and to set values for
the dictionary. Further the list of all the keys of the dictionary can be obtained by using the "keys"
keyword. The usage for these is shown below.

1. Get: Gets the value of key in the dictionary. The return type of this operation is the same as the
type of the values of the dictionary being accessed. The syntax is similar to Python. The name of
the dictionary followed by the value of the key surrounded by square braces as shown below.

a = { : 1, . 2}
a[] # evaluates to 1
a[] # evaluates to 2

2. Keys: The return type of this operation is a list of the same type as the keys of the dictionary. It
can be used as a way to iterate over the values in the dictionary. Keys acts as a unary operator
where the operand must be a dictionary and the result is a list.

a = { : 1, . 2}
keys a # evaluates to ["foo", "bar"]

Other useful dictionary operations such as "contains", "del" or "count" will be provided by the standard

library.

Operator Precedence

The operator precedence specifies the order in which operations occur when there is more than one
operator in an expression. All operators in SPY are left associative except for assign (
which is left associative. The operator precedence can be overruled by using parentheses to dictate

) and cons ("::")

which operations occur first.

unary negation

* /s %
+, -
<=, >=, &, >, ==, I=
not
and, or
Ny, i, @, keys
=, <-
Functions

Functions are an integral part of any functional language. All functions in SPY are expressions. Functions
are treated as first class citizens and can be passed to and from other functions as arguments or return
values. Functions can be assigned to named identifiers using the "def" keyword as demonstrated above.
Further smaller functions that can fit on a single line can be created using the lambda keyword with the
syntax shown above. The argument list for functions is specified as a comma separated list of expressions
containing one or more element and surrounded by parentheses. The parentheses are mandatory even
if there are no arguments to the function.

Function declarations

Functions in SPY are simply expressions that can be assigned to variables. Functions are declared within a
"lambda" and "end" block. For function declarations the lambda keyword must be followed by a left
paren separator. This is then followed by zero or more identifiers that are the names for the arguments
of this function and then a closing right paren. This should then be followed by a colon and a newline
which indicates the start of the function block. The block ends with the end keyword. The body of the
function can be any sequence of expressions. Local variables defined in the function will be accessible
anywhere within the function, including in nested functions. The last expression of the function is
returned to the calling function.

func_name = lambda(argl, arg2,...):
block of expressions
last expression is returned

end

This syntax can be parsed with the following structure in the grammar:

id = lambda (optional_args) : <new-Line> function body end

Above, optional_args is a comma separated list of identifiers, function_body is a list of expressions
separated by newlines in the code. The last expression of function_body is returned.

The types of a function including the return type and types of its argument list will be inferred by the
compiler. This represents the type of the function and the types of the arguments when calling a
function must match the types that are inferred by the compiler.

Function invocation

A function is invoked by using its name which is declared during function declaration. A function must be
invoked with actual arguments that match the types of the formal arguments for the function. These
arguments can be any expression so long as the expression evaluates to the expected type for the formal
argument. A function invocation evaluates to a value that is of the type which is the return type of the
function being invoked. The syntax for function invocation is described below:

a = func_name(argl, arg2,...)

Examples
b = factorial(3) # b is assigned 3 * 2 * 1 which is 6
¢ = isPalindrome(A) # c is assigned false. dogcow isn't a palindrome

This syntax can be parsed with the following structure in the grammar:

id (optional _args)

The optional_args must be a list of expression that evaluate to types that match the function definition.

Expressions

Everything in SPY is an expression. This allows an entire program to be defined as a list of expressions.
Expressions are composed of identifiers, literals, operators, function definitions and function calls.
Expressions can be of the following types:

Unary operations

Binary operations

Assignment operations

Function definitions

Function invocations

Literals of primitive types

Literals of composite types

Block of expressions (expression list)
Identifiers

10. If statement, optional elif statements and else statement
11. Element of list or dictionary

L 0N R WN e

A program is a sequence of expressions separated by newline characters.

Blocks and Scope

A block is simply a list of expressions that are collectively treated as one. In SPY blocks are encountered
inside function declarations and if-elif-else statements.

The syntax for if-elif-else statements is exactly like Python (without the tab spacing) and ending with the
"end" keyword. All expression between the colon (":") after the if statement and the next elif or else are
treated as a block. Similarly everything between the colon after the elif statement and the next elif or

else is treated a block.

Identifiers in SPY are statically scoped so that they can only be accessed within the block in which they
are declared. Global variables may exist and may be reassigned but they must remain of the same type
throughout the program. If an identifier cannot be found in its current scope then the parent scope is
checked recursively until we get to the global scope. If it is still not found then an error is returned if an
unfound identifier is accessed.

Chapter 4: SPY Architecture

Architecture Overview

The SPY compiler consists for four major components.
1. The scanner lexically analyzes the input program and converts it into a stream of tokens. Any
invalid characters are surfaced by the scanner as a syntax error.

2. The parser accepts the stream of tokens from the scanner and outputs an abstract syntax tree
(AST) with ambiguous data types. Any incorrect syntax errors are surfaced by the parser.

3. The type checker consumes the ambiguous AST generated by the parser and generates a
strongly typed, annotated AST. Any type mismatch or argument count mismatch errors are
surfaced by the type checker.

4. The code generator is the final step of the process and it outputs compiled valid javascript code.
Any remaining type errors or scoping errors are surfaced by the code generator.

Architecture Diagram

Source Code
(example.spy)

source code text

Output
(out.js)

javascript code

Scanner

token stream

Code Generator

.

type annotated AST

Parser

15%

Type Checker

Chapter 5: Test Plan

The test plan for the SPY compiler aimed at being both simple but robust at the same time. | wanted to
ensure that the type inference mechanism was tested thoroughly while also making sure that the
functionality was preserved for the functions being written. The best way to do this was through
automated end to end integration tests.

These tests covered both passing and failing test cases. In this way | was able to test functionality (for
passing cases) as well and the correct functionality of the compiler in the case of a syntax or type error.

The testing mechanism was borrowed from the JSIS compiler and is as follows:
1. Atest file (pass-testl.spy) and a test output file (pass- testl.txt) was created for each test case.
2. The test name specifies whether the test is expected to pass or fail (preceding the "-")
3. The .spy file is then compiled and the resulting JS is executed using node.
4. If the compilation fails then the test runner ensures that the test was expected to fail.
a. Inthis case the output from running the test is the string version of the exception that
was thrown by the compiler
b. The output file for this test case is compared against the exception that was surfaced to
ensure that the correct error was surfaced
5. If the compilation is successful then the output of running the code is compared against the test
output file using a diff to make sure that they are the same. The output in the test output file is
considered the golden standard (created manually) and any diff in the output would indicate an
error.

These automated tests proved to be crucial in developing SPY since they allowed me to quickly and easily
run the entire test suite while making incremental changes to the compiler. More tests can always be
added by simply adding two more files to represent a test case.

The test cases devised were entirely decided based on the functionality that needed to be tested. Each
of the various features in the SPY language were tested separately for both failure and passing and more
complex programs were written as well to ensure that the code worked correctly even with a larger
program to compile.

Chapter 6: Lessons Learned

| learned a lot for this class and from working on this project. | would have loved to work on it as part of
a group since a large part of this class also revolves around working with other people but there was
plenty to take away from the project.

| learned that compilers are extremely complicated and a lot of thought, design, and strong opinions
need to go into coming up with a new language. Further, | realized that new languages should only be
created to serve a very specific purpose (or not be created at all).

Learning OCaml and working with a functional language was another incredible learning. They are
extremely powerful and it always amazes me how things just work as soon as it compiles. The SPY
language was inspired by Ocaml and Python in that it tries to be functional as far as possible so | really
enjoyed working with and trying to create a functional language.

| also became acutely aware of the amazing functionality that modern day compilers offer that we tend
to take for granted as software engineers. | have a newfound respect for programming languages created
so far, finally being able to understand the complexity and effort behind creating one.

Finally, as advice for students in future semesters, I'd recommend starting early. Building a compiler is
pretty much an endless process and it's extremely tempting to continue adding features. Or there are
never enough tests. Or there is an edge case that you missed. Or there will be some functionality that
you will suddenly want to add. Starting early will enable you to gain the most from this class.

Note: This compiler was initially supposed to compile to C which would have been considerably harder
to implement with type inference as well. | ran out of time to compile to C which is why this project
instead generates Javascript which is more forgiving. Further my lack of familiarity with C and insistence
on having complex data types like lists and dictionaries made C a much harder language to compile to.
This is partially why I'd advise future students to start early and to design their input and output
languages in a way that makes creating a compiler easier.

Chapter 7: SPY Compiler Source Code

scanner.mll

{

open Parser

}

let alpha = ['a'-"z' 'A'-'Z"]
let digit = ['0'-'9"]

let ascii = [" "-"!I" "#'-'[" "]'-"'~"]

let whitespace = [' " "\t' '"\r']

let escape chars = ["\\'" """ 'n" '"t' 'r']
let number = digit+ '.'? digit*

let str = (ascii | "\\' escape_chars)*
let id = ['a'-"'z'] (alpha | digit | '_")*

rule token = parse

whitespace { token lexbuf }

| r#' { comment lexbuf }
n' { EOL }
{ LPAREN }
{ RPAREN }
{ LSQUARE }
{ RSQUARE }
{ LBRACE }
{ RBRACE }
{ COLON }
{ COMMA }
{ PLUS }
{ MINUS }
{ MULTIPLY }
{ DIVIDE }
{
{
{
{
{
{
{
{
{
{
{
{

D s T I, (N

.

0 ~ ¥ 1

MODULUS }
LT }

GT }
ASSIGN }
NOT }
CARET }
APPEND }
CONS }
LTE }
GTE }

EQ }

NEQ }

® > = Il v A

VvV OA e
] | I e

| "and" { AND }

| "or" { OR }

| "not" { NOT }

| "lambda" { LAMBDA }

| "true" { TRUE }

| "false" { FALSE }

| "if" { IF }

| "elif" { ELIF }

| "else" { ELSE }

| "end" { END }

| "none" { NONE }

| eof { EOF }

| number as num { NUM_LIT(float_of string num) }
| '"" (str as s) '™’ { STR_LIT(s) }

| id as identifier { ID(identifier) }

| _ as char { raise (Failure("SyntaxError: Invalid syntax -> " #

Char.escaped char)) }

and comment = parse
‘\n" { token lexbuf }
| { comment lexbuf }

ast.ml

type op =
Add | Sub | Mult | Div | Mod
Caret

|

| And | Or
| Eq | Neq | Lt | Lte | Gt | Gte
| Cons | Append

type uop = Neg | Not

type expr =
VoidLit
| NumLit of float
| StringLit of string
| BoolLit of bool
| ListLit of expr list
| DictLit of (expr * expr) list
| FunLit of string list * expr
| val of string
| Binop of expr * op * expr
| Unop of uop * expr
| Assign of string * expr

Call of expr * expr list
Element of string * expr

Block of expr list

If of (expr * expr) list * expr
NoExpr

type program = expr list

type pType =

|
|
|
|
|
|
|
|
and

T of string

TAny

TNum

TString

TBool

TVoid

TFun of funcType

TList of pType

TDict of pType * pType
funcType = pType list * pType

type aexpr =

AVoidLit of pType

ANumLit of float * pType

AStringLit of string * pType

ABoolLit of bool * pType

AListLit of aexpr 1list * pType

ADictLit of (aexpr * aexpr) list * pType
AFunLit of string list * aexpr * pType
Aval of string * pType

ABinop of aexpr * op * aexpr * pType
AUnop of uop * aexpr * pType

AAssign of string * pType * aexpr * pType
ACall of aexpr * aexpr list * pType
AElement of string * aexpr * pType

ABlock of aexpr list * pType

AIf of (aexpr * aexpr) list * aexpr * pType

parser.mly

%{ open Ast %}

/* Tokens */

%token EOL EOF

%token PLUS MINUS MULTIPLY DIVIDE MODULUS
%token LT LTE GT GTE EQ NEQ TRUE FALSE

%token AND OR NOT

%token LPAREN RPAREN LBRACE RBRACE LSQUARE RSQUARE
%token ASSIGN LAMBDA END IF ELIF ELSE

%token CARET CONS APPEND

%token COLON COMMA

%token NONE

%token <float> NUM_LIT

%token <string> STR_LIT

%token <string> ID

%right ASSIGN

%right CONS

%left APPEND

%left CARET

%left OR

%left AND

%left NOT

%left LTE GTE LT GT EQ NEQ
%left PLUS MINUS

%left MULTIPLY DIVIDE MODULUS
%left NEG

%start program
%»type <Ast.program> program

%%

program:
expr_list EOF { $1 }

delimited_expr:

EOL { NoExpr }
| expr EOL { %1 }
expr_list:
/* nothing */ { []}

| delimited expr expr_list { if $1 = NoExpr then $2 else $1 :: $2 }

fun_literal:
LAMBDA LPAREN formals_opt RPAREN COLON EOL expr_list END { FunLit($3, Block($7))
}

formals_opt:
/* nothing */ { [] }
| formal list { List.rev $1 }

formal_list:

1D { [$1] }
| formal list COMMA ID { $3 :: $1 }

if_expr:
IF expr COLON EOL expr_list elif list ELSE COLON EOL expr list END { If(($%$2,
Block($5)) :: $6, Block($10)) }

elif_list:
/* nothing */ {11}
| elif elif list { $1 :: $2 }

elif:
ELIF expr COLON EOL expr list { ($2, Block($5)) }

actuals_opt:
/* nothing */ { [] }
| actual list { List.rev $1 }

actual_list:

expr { [$1] }
| actual list COMMA expr { $3 :: $1 }

kv_pairs:
/* nothing */ {[]}
| kv_pair_list { List.rev $1 }

kv_pair_list:
expr COLON expr { [($1, $3)] }
| kv_pair_list COMMA expr COLON expr { ($3, $5) :: $1 }

literals:
NUM_LIT { NumLit($1) }
STR_LIT { StringLit($1) }

|

| TRUE { BoolLit(true) }

| FALSE { BoolLit(false) }

| ID { val($1) }

| NONE { VoidLit }

| LSQUARE actuals_opt RSQUARE { ListLit($2) }
| LBRACE kv_pairs RBRACE { DictLit($2) }
|

fun_literal { $1 }

expr:
literals { $1 }
| if_expr { $1}
| expr PLUS expr { Binop($1, Add, $3) }
| expr MINUS expr { Binop($1, Sub, $3) }

| expr MULTIPLY expr { Binop($1, Mult, $3) }

expr
expr
expr
expr
expr
expr
expr
expr
expr
expr
expr
expr
expr

MINUS expr %prec NEG

DIVIDE expr
MODULUS expr
EQ expr

NEQ expr

GT expr

GTE expr

LT expr

LTE expr
AND expr

OR expr
CONS expr
APPEND expr
CARET expr

NOT expr

ID ASSIGN expr
LPAREN expr RPAREN {
ID LPAREN actuals_opt

ID LSQUARE expr RSQUARE

utils.ml

open Ast

{
{

Binop($1,
Binop($1,
Binop($1,
Binop($1,
Binop($1,
Binop($1,
Binop($1,
Binop($1,
Binop($1,
Binop($1,
Binop($1,
Binop($1,
Binop($1,

Div, $3) }
Mod, $3) }
Eq, $3) }
Neq, $3) }
Gt, $3) }
Gte, $3) }
Lt, $3) }
Lte, $3) }
And, $3) }
or, $3) }
Cons, $3) }
Append, $3) }
Caret, $3) }

{ Unop(Neg, $2) }

Unop (Not,

$2) }

Assign($1, $3) }

$2 }

RPAREN { Call(val($1), $3) }
{ Element($1, $3) }

module CharMap = Map.Make(String)

(* Functions to print AST *)
string _of_op = function

let

o

Add
Mult
Sub
Div
Mod

Caret
Append

And
or
Lte
Gte
Neq
Eq
Lt
Gt
Cons

-> M
-y "xm
->
->
->

|l/||
u@n
u&&n
n | | "
u<=n
>="

let

Not ->
| Neg ->

string of _uop = function

let rec string_of_expr = function
VoidLit -> "VOoID"

| NoExpr -> "\n"

| NumLit(n) -> string of_float n

| StringLit(s) ->'s

| BoolLit(true) -> "True"

| BoolLit(false) -> "False"

| ListLit(1) -> "[" ~ String.concat ", " (List.map string of expr 1) ~
2K

| DictLit(1) -> let pairs = List.map (fun (k, v) -> string_of_expr k *
": " A string_of_expr v) 1 in "{" ~ (String.concat ", " pairs) ~ "}"

| FunLit(args, s) -> "lambda(" ~ String.concat ", " args ~ "):\n" %
string_of_expr s

| val(s) -> s

| Binop(el, op, e2) -> string_of_expr el ~ " " ~ string of opop ~ " " ~
string of_expr e2

| Unop(op, e) -> string_of_uop op ~ " " ~ string_of_expr e

| Assign(v, e) -> v A" =" " string_of_expr e

| call(val(f), args) -> f ~ "(" ~ String.concat ", " (List.map string_of expr

args) ~ ")

| call(_, args) ->

| Element(s, e) ->

| Block(es) ->
"\nend\n"

| If(esl, s) ->
esl)) ~

and string_of_elif el =

"==== THIS SHOULD NEVER HAPPEN ===="
s A "[" ~ string_of expr e &~ "]"
String.concat "\n" (List.map string of expr es) *

"if " 2~ string_of_expr (fst(List.hd esl)) ~ ":\n" A
string_of_expr (snd(List.hd esl)) *
String.concat "\n" (List.map string of elif (List.tl

"else:\n" ~ string_of_expr s

"elif " ~ string_of_expr (fst el) ~ ":\n" ~ string_of_expr (snd el)

let string_of_program prog
String.concat

let string_of_type t =
let rec helper t chr map
match t with
TNum =2

num

\n" (List.map string_of_expr prog)

, chr, map

| TString -> "string", chr, map
| TBool -> "bool", chr, map

| TAny -> "any", chr, map

| TVoid -> "void", chr, map

| T(x) ->

let gen_chr, new_chr, new_map = if CharMap.mem x map
then Char.escaped (Char.chr (CharMap.find x map)), chr, map

else

let ¢ = Char.escaped (Char.chr chr) in

c, (chr + 1), CharMap.add x
in

chr map

Printf.sprintf "%s" gen_chr, new_chr, new_map

| TList(t) ->

let st, ¢, m = helper t chr map

(Printf.sprintf "list %s" st), c

| TDict(kt, vt) ->
let stl, c1, ml =
let st2, c2, m2 =
(Printf.sprintf
| TFun(args_type, ret_type) ->
let fold_func acc arg =
let (c, m) = snd(acc) in
let argt, cl1, ml = helper arg
(fst(acc) @ [argt], (cl, ml))

let sargs, (c, m) = List.fold left fold func ([],
helper ret_type c m in

let rs, ¢, m =

in
, m

helper kt chr map in
helper vt cl1 ml in
"<%s:i%s>" stl st2), c2, m2

cmin
in

(chr, map)) args_type in

let sargs = String.concat ", " sargs in
Printf.sprintf "(%s) -> %s" sargs rs, c, m
in
let s, , = helper t 65 CharMap.empty in s

I

let rec string_of_aexpr ae =
match ae with

ABoolLit(b, t) -> Printf.
(string_of_type t)

| ANumLit(x, t) -> Printf
(string_of_type t)

| AStringLit(s, t) -> Printf.

| AvoidLit(t) -> Printf.

| Aval(s, t) -> Printf

| ABinop(el, op, e2, t) -> Printf.

sprintf

.sprintf

sprintf
sprintf

.sprintf

sprintf

"(%s: %s)" (string_of _bool b)

"(%s: %s)" (string_of_float x)
"(%s: %s)"
"(voIiD)"
"(%s: %s)" s (string_of_type t)

"(%s %s %s: %s)" (string_of_aexpr el)

s (string_of_type t)

(string_of_op op) (string of_aexpr e2) (string_of_type t)

| Aunop(op, e, t)
(string_of _uop op) (string_of_ type t)
| AAssign(id, t1, e, t2)

-> Printf.sprintf "%s: %s = %s

tl) (string_of_aexpr e) (string_of_type t2)

-> Printf.sprintf "(%s %s: %s)" (string_of_aexpr e)

: %s" id (string_of_type

| AListLit(aes, t) -> Printf.sprintf "[%s]:%s" (String.concat ","
(List.map string of_aexpr aes)) (string of type t)

| ADictLit(kvpairs, t) -> Printf.sprintf "dict < >: %s" (string_of_type t)

| AIf(apairs, ae, t) -> Printf.sprintf "if {} elif {} else {}: %s"
(string_of_type t)

| ABlock(aes, t) -> Printf.sprintf "{ %s }" (String.concat "\n"
(List.map string_of aexpr aes))

| Acall(afn, aargs, t) -> Printf.sprintf "%s(%s) : %s" (string_of_aexpr afn)
(String.concat "," (List.map string_of aexpr aargs)) (string_of type t)

| AElement(id, ae, t) -> Printf.sprintf "%s[%s] : %s" id (string_of aexpr ae)

(string_of_type t)
| AFunLit(ids, body, t) -> begin
let args_with_types, ret_type = (match t with
TFun(args_type, ret_type) -> List.combine ids args_type, ret_type
| _ -> raise (Failure("not a valid function"))) in

let fargs = String.concat ", " (List.map (fun (id, typ) -> id ~ " : " ~
string_of_type typ) args_with_types) in
let fsig = "(" ~ fargs ~ ")" ~ " : " A (string_of_type ret_type) in
let fbody = string of_aexpr body in
String.concat " " ["lambda"; fsig; "="; "{"; fbody; "}"]
end

let string_of_aprogram aprog =
String.concat "\n" (List.map string of aexpr aprog)

library.ml

open Ast
module NameMap = Map.Make(String);;

let library_functions = [
("print", TFun([T("A")], TVoid));
("print_str", TFun([TString], TVoid));
("print_num", TFun([TNum], TVoid));
("print_bool", TFun([TBool], TVoid));
("print_list", TFun([TList(T("AI"))], TVoid));
("print_dict", TFun([TDict(T("AJ"), T("AK"))], TVoid));
("to_str", TFun([TNum], TString));
("hd", TFun([TList(T("B"))], T("B")));
("empty", TFun([TList(T("C"))], TBool));
("tl", TFun([TList(T("D"))], TList(T("D"))));
("len", TFun([TList(T("E"))], TNum));

("filter", TFun([TFun([T("F")],TBool); TList(T("F"));], TList(T("F"))));
("map", TFun([TFun([T("G")],T("H")); TList(T("G"));], TList(T("H"))));
("foldl”, TRun([TFun([T("I"); T("3")], T("I")); T("I"); TList(T("3")], T("I")));
("contains", TFun([TDict(T("K"), T("L")); T("K")], TBool));
("del”, TFun([TDict(T("M"), T("N")); T("M");], TDict(T("M"), T("N"))));
("keys", TFun([TDict(T("0"), T("P"));], TList(T("0"))));
("count", TFun([TDict(T("Q"), T("R"))], TNum));
155

let built_in_functions = List.fold left
(fun acc (id, t) -> NameMap.add id t acc)
NameMap.empty library_ functions

spy.ml

open Ast

open Lexing
open Parsing
open Core.Std
open Codegen

let inchan = if Array.length Sys.argv > 1
then In_channel.create ~binary:true Sys.argv.(1)
else In_channel.stdin

(*

let =
let Llexbuf = Lexing.from_channel inchan in
Let program = Parser.program Scanner.token Lexbuf 1in
print_endline (Utils.string_of program program)

*)

(*
let =
let Llexbuf = Lexing.from_channel inchan in
Let program = Parser.program Scanner.token Lexbuf 1in
Let inferred_program = try Typechecker.type check program
with e -> Printf.printf "Error: %s\n" (Exn.to string e); exit 1 in
print_endline (Utils.string_of _aprogram inferred_program)

*)

let =
let lexbuf = Lexing.from_channel inchan in
let program = Parser.program Scanner.token lexbuf in
let inferred_program = try Typechecker.type check program
with e -> Printf.printf "Error: %s\n" (Exn.to_string e); exit 1 in
let s_prog = try Codegen.js of _aprog inferred_program
with e -> Printf.printf "Error: %s\n" (Exn.to_string e); exit 1 in
let outc = Out_channel.create "out.js" in
Printf.fprintf outc "%s" s_prog; Out_channel.close outc

typechecker.ml

open Ast
open Lexing
open Parsing
open Utils

module NameMap = Map.Make(String)
module GenericMap = Map.Make(Char)
module KeywordsSet = Set.Make(String)

let type_variable = (ref ['A"'; 'A'; 'A']);;

let js_keywords = ["break"; "case"; "class"; "catch"; "const"; "continue";
"debugger"; "default"; "delete"; "do"; "else";
"export"; "extends"; "finally"; "for"; "function"; "if";
"import"; "in"; "instanceof"; "new"; "return"; "super";
"switch"; "this"; "throw"; "try"; "typeof"; "var"; "void";
"while"; "with"; "yield"; "val";];;

let spy lib = ["print"; "print_num"; "print_str"; "print_bool";
"print_list"; "print_map"; "to_str"; "hd"; "empty";
"tl"; "contains"; "del"; "keys"; "len"; "filter"; "map";
"foldl"; "count"; 1];;

let all keywords = List.fold_left (fun acc x -> KeywordsSet.add x acc)
KeywordsSet.empty (spy_lib @ js_keywords);;

let spy _keywords = List.fold left (fun acc x -> KeywordsSet.add x acc)
KeywordsSet.empty spy lib;;

let get_new_type ()
let rec helper cs
let ys = match List.rev cs with

[1 ->['A"]

| "z" :: xs -> "A' :: List.rev (helper (List.rev xs))
| x :: xs -> (Char.chr ((Char.code x) + 1)) :: Xxs
in List.rev ys
in
let curr_type var = !type variable in
type_variable := helper (curr_type_var);

T(String.concat (List.map Char.escaped curr_type var))

let merge_env env =
let locals, globals = env in
let merged_globals = NameMap.merge (fun k k1 k2 -> match ki1, k2 with
Some k1, Some k2 -> Some k1l

| None, k2 -> k2
| k1, None -> k1)
locals globals in

NameMap.empty, merged_globals

I

let rec annotate_expr e env =
match e with

VoidLit -> AVoidLit(TVoid), env
| NumLit(n) -> ANumLit(n, TNum), env
| BoolLit(b) -> ABoolLit(b, TBool), env

| StringlLit(s) -> AStringLit(s, TString), env

| Binop(el, op, e2) ->
let ael = fst(annotate_expr el env)
and ae2 = fst(annotate_expr e2 env)
and new_type = get_new_type () in
ABinop(ael, op, ae2, new_type), env

| Unop(op, e) ->
let ae = fst(annotate_expr e env)
and new_type = get _new_type () in
AUnop(op, ae, new_type), env

| val(id) -»>
let locals, globals = env in
let typ = if NameMap.mem id locals
then NameMap.find id locals
else if NameMap.mem id globals
then NameMap.find id globals
else raise (Failure("Error: value " ~ id ~ " was used before it was
defined")) in
Aval(id, typ), env

| FunLit(formals, e) -> begin
List.iter (fun k -> if KeywordsSet.mem k all keywords
then raise (Failure("Error: Cannot redefine keyword " *
k))
else ()) formals;
let annotated_args = List.map (fun formal -> (formal, get_new_type ()))
formals in
let locals, globals = merge_env env in
let new_locals = List.fold left (fun map (it, at) -> if NameMap.mem it map
then raise
(Failure("Error: " ~ it ~ " cannot be redefined in the current scope"))
else NameMap.add it at
map) locals annotated_args in
let new_env = (new_locals, globals) in

let ae, _ = (match e with
Block(es) -> begin
let aes, = List.fold left (fun (aes, env) e -> let ae, env =
annotate_expr e env in (ae :: aes, env)) ([], new_env) es
in ABlock(List.rev aes, get_new_type()), new_env
end

| _ -> raise (Failure("Unreachable state: FunLit"))) in
let arg_types = List.map snd annotated_args in
AFunLit(formals, ae, TFun(arg_types, get_new_type ())), env
end

| call(fn, args) -> begin
let afn, _ = annotate_expr fn env in
let aargs = List.map (fun arg -> fst (annotate_expr arg env)) args in
ACall(afn, aargs, get new_type ()), env
end

| Assign(id, e) -> begin
let locals, globals = env in
if NameMap.mem id locals
then raise (Failure("Error: " ~ id ~ " cannot be redefined in the current
scope™))
else if KeywordsSet.mem id all keywords
then raise (Failure("Error: Cannot redefine keyword " ~ id))
else let t = get_new_type () in
let new_locals = NameMap.add id t locals in
let ae, _ = match e with
FunLit(_) -> annotate_expr e (new_locals, globals)
| _ -> annotate_expr e env in
AAssign(id, t, ae, TVoid), (new_locals, globals)
end

| ListLit(es) ->
let aes = List.map (fun e -> fst (annotate_expr e env)) es in
AListLit(aes, TList(get _new_type ())), env

| DictLit(kvpairs) ->
let apairs = List.map (fun (k, v) -> fst (annotate_expr k env), fst
(annotate_expr v env)) kvpairs in
ADictLit(apairs, TDict(get_new_type (), get_new_type ())), env

| If(pepairs, e) ->
let apairs = List.map (fun (p, e) -> fst (annotate_expr p env), fst
(annotate_expr e env)) pepairs
and ae = fst (annotate_expr e env) in
AIf(apairs, ae, get new_type ()), env

| Block(es) -> begin
let new_env = merge_env env in
let aes, new_env = List.fold left (fun (aes, env) e -> let ae, env =

annotate_expr e env in (ae :: aes, env)) ([], new_env) es in
ABlock(List.rev aes, get_new_type ()), env
end

| Element(id, e) -> begin
let locals, globals = env in
let typ = if NameMap.mem id locals
then NameMap.find id locals
else if NameMap.mem id globals
then NameMap.find id globals
else raise (Failure("Error: value " ”~ id ~ " was used before it was
defined")) in
let t = (match typ with
TList(t) -> t
| TDict(t1l, t2) -> t2
| _ -> get_new_type ()) in

let ae, _ = annotate_expr e env in
AElement(id, ae, t), env
end

| _ -> raise (Failure("Error: unexpected expression found"))

I

let type_of = function

AVoidLit(t) -> t
| ANumLit(, t) -> t
| ABoolLit(_ , t) -> t
| AStringLit(, t) -> t
| ABinop(, , , t) -> t
| AUnop(_, , t) -> t

| AListLit(, t) -> t
| ADictLit(, t) -> t
| ABlock(, t) -> t
| AAssign(, , , t) ->t
| Aval(_, t) -> t
| AIF(_, , t) -> t
| ACall(, _, t) -> t
| AFunLit(_, , t) -> t
| AElement(, , t) -> t

let rec get_constraints ae =
match ae with
AVoidLit() | ANumLit() | ABoolLit() | AStringLit() | Aval() -> []

| ABinop(ael, op, ae2, t) ->
let etl = type_of ael and et2 = type of ae2 in
let opc = match op with
Add | Sub | Mult | Div | Mod -> [(etl, TNum); (et2, TNum); (t, TNum)]

| caret -> [(etl, TString); (et2, TString); (t,
TString) |

| And | Or -> [(et1, TBool); (et2, TBool); (t, TBool)]

| Lt | Lte | Gt | Gte -> [(et1, et2); (t, TBool)]

| Eq | Neq -> [(etl, et2); (t, TBool)]

|

Cons -> (match et2 with
TList(x) -> [(etl, x); (t, et2)]
| T(C) -> [(et2, TList(etl)); (t, TList(etl))]
| _ -> raise (Failure("Type error: Lists can only contain one type")))
| Append -> (match etl, et2 with
TList(), TList() -> [(etl, et2); (t, et2)]

| T(), TList() -> [(et1, et2); (t, et2)]
| TList(), T() -> [(et2, etl); (t, etl)]
| , _ -> raise (Failure("Type error: Lists can only contain one type")))

in
(get_constraints ael) @ (get_constraints ae2) @ opc

| AUnop(op, ae, t) ->
let et = type _of ae in
let opc = (match op with
Not -> [(et, TBool); (t, TBool)]
| Neg -> [(et, TNum); (t, TNum)]) in
(get_constraints ae) @ opc

| AIf(apairs, ae, t) ->
let plist = List.map fst apairs in
let elist = List.map snd apairs in
let p_conts = List.map (fun p -> (type_of p, TBool)) plist in

let e_conts = List.map (fun e -> (type_of e, type_of ae)) elist in

(t, type of ae) :: (List.flatten (List.map get _constraints plist)) @
(List.flatten (List.map get _constraints elist)) @ (get_constraints ae) @ p_conts @
e_conts

| AListLit(aes, t) ->
let list_type = match t with
TList(x) -> x
| _ -> raise (Failure("Unreachable state: ListLit")) in
let elem conts = List.map (fun ae -> (list_type, type of ae)) aes in
(List.flatten (List.map get constraints aes)) @ elem_conts

| ADictLit(kvpairs, t) ->
let kt, vt = match t with
TDict(kt, vt) -> kt, vt

| _ -> raise (Failure("Unreachable state: DictLit")) in
let klist = List.map fst kvpairs in
let vlist = List.map snd kvpairs in
let k_conts = List.map (fun k -> (kt, type_of k)) klist in
let v_conts = List.map (fun v -> (vt, type_of v)) vlist in
[(t, TDict(kt, vt))] @ (List.flatten (List.map get_constraints klist)) @

(List.flatten (List.map get constraints vlist)) @ k_conts @ v_conts

| ABlock(aes, t) ->
let last_type = (match List.hd (List.rev aes) with
AAssign(id, , ,) -> raise (Failure("Type error: Assignment
expressions cannot be returned"))
| ae -> type_of ae) in
(t, last_type) :: (List.flatten (List.map get_constraints aes))

| AAssign(, t, ae,) -> (t, type_of ae) :: (get_constraints ae)

| AFunLit(, ae, t) -> (match t with
TFun(_, ret_type) -> (type_of ae, ret_type) :: (get _constraints ae)
| _ -> raise (Failure("Unreachable state: FunLit")))

| Acall(afn, aargs, t) ->
let typ _afn = (match afn with
Aval(_) -> type_of afn
| _ -> raise (Failure("Unreachable state: Call"))) in
let sign_conts = (match typ afn with
TFun(arg_types, ret_type) -> begin
let 11 = List.length aargs and 12 = List.length arg_types in
if 11 <> 12
then raise (Failure("Error: Expected number of argument(s): " #
(string of_int 12) ~ ", got " ~ (string of_int 11) ~ " instead."))
else let arg conts = List.map2 (fun ft at -> (type_of at, ft))

arg_types aargs in
(ret_type, t) :: arg_conts
end
| T() -> [(typ_afn, TFun(List.map type of aargs, t))]
| -> let st = Utils.string of_type typ afn in
let ft = TFun(List.map type of aargs, t) in
let sft = Utils.string_of_type ft in
raise (Failure("Type error: expected value of type " ~ st ~ ", got
type " ~ sft))) in
(get_constraints afn) @ (List.flatten (List.map get constraints aargs)) @
sign_conts
| AElement(_, ae, t) -> (get_constraints ae)

let rec substitute pt ch typ =
match typ with
TNum | TBool | TString | TVoid | TAny -> typ
| T(c) -> if ¢ = ch then pt else typ
| TFun(tl, t2) -> TFun(List.map (substitute pt ch) tl1, substitute pt ch t2)
| TList(t) -> TList(substitute pt ch t)
| TDict(kt, vt) -> TDict(substitute pt ch kt, substitute pt ch vt)

let apply subs t =
List.fold_right (fun (ch, pt) typ -> substitute pt ch typ) subs t

let rec resolve_type ch t =

match t with

T(c) when ch = ¢ -> false

| TList(tlist) -> resolve_type ch tlist

| TDict(kt, vt) -> (resolve type ch kt) && (resolve type ch vt)

| TFun(argst, ret_t) -> let res = List.map (resolve type ch) (ret t :: argst) in
List.fold left (&) true res

| -> true

I

let rec unify = function

[1->11
| (t1, t2) :: cs ->
let subs2 = unify cs in
let subsl = unify one (apply subs2 t1) (apply subs2 t2) in
subsl @ subs2

and unify one tl1l t2 =
match t1, t2 with
TNum, TNum | TBool, TBool | TString, TString | TVoid, TVoid -> []

| T(x), z | z, T(x) ->
if (t1 = t2 || resolve type x z)
then [(x, z)]
else raise (Failure("Type error: expected value of type " #
(Utils.string_of_type t2) ~ ", got type " ~ (Utils.string of type t1)))
| TList(t1), TList(t2) -> unify one t1 t2
| TDict(ktl, vtl), TDict(kt2, vt2) ->
let = (match ktl with
TNum | TBool | TString | T() -> ()
| _ -> raise (Failure("Type Error: Cannot have key of type " ~
(Utils.string_of_type ktl) ~ " in a Dict."))) in
unify [(kt1, kt2) ; (vt1l, vt2)]
| TFun(a, b), TFun(x, y) ->
let 11 = List.length a and 12 = List.length x in

if 11 = 12
then unify ((List.combine a x) @ [(b, y)])
else raise (Failure("Error: Expected number of argument(s): " *

(string of_int 11) ~ ", got " ~ (string of_int 12) ~ " instead."))
| _ -> raise (Failure("Type error: expected value of type " *
(Utils.string of_type t2) ~ ", got type " ~ (Utils.string of_type t1)))

o

let rec apply_expr subs ae =
match ae with

ABoolLit(b, t) -> ABoolLit(b, apply subs t)
| ANumLit(n, t) -> ANumLit(n, apply subs t)
| ASstringLit(s, t) -> AStringLit(s, apply subs t)
| AvoidLit(t) -> AVoidLit(apply subs t)
| Aval(s, t) -> AVal(s, apply subs t)
| AAssign(id, t, ae,) -> AAssign(id, apply subs t, apply expr subs ae,
TVoid)

| ABinop(ael, op, ae2, t) -> ABinop(apply expr subs ael, op, apply_expr subs
ae2, apply subs t)

| AUnop(op, ae, t) -> AUnop(op, apply expr subs ae, apply subs t)

| AListLit(aes, t) -> AListLit(List.map (apply_expr subs) aes, apply subs
t)

| ADictLit(kvpairs, t) -> ADictLit(List.map (fun (k, v) -> (apply_expr subs
k, apply_expr subs v)) kvpairs, apply subs t)

| AIf(apairs, ae, t) -> AILf(List.map (fun (p, e) -> (apply_expr subs p,
apply_expr subs e)) apairs, apply_expr subs ae, apply subs t)

| ABlock(aes, t) -> ABlock(List.map (apply_expr subs) aes, apply subs
t)

| AFunLit(ids, ae, t) -> AFunLit(ids, apply_expr subs ae, apply subs t)

| Acall(afn, aargs, t) -> ACall(apply_expr subs afn, List.map (apply_expr

subs) aargs, apply subs t)
| AElement(id, ae, t) -> AElement(id, apply expr subs ae, apply subs t)

I

let infer expr env =
let aexpr, env = annotate_expr expr env in
let constraints = get_constraints aexpr in
let subs = unify constraints in
let inferred_expr = apply expr subs aexpr in
inferred_expr, env

I

let type_check program =
let built_in_functions = Library.built_in_functions in
let env = (NameMap.empty, built in_functions) in
let infer_helper (acc, env) expr =
let inferred_expr, env = try infer expr env
with e -> raise e in
let inferred_expr, env = (match inferred_expr with
AAssign(id, t, ae,) ->
let subs = [] in
let locals, globals = env and aet = type_of ae in
let locals = NameMap.add id aet locals in
let ret_ae = AAssign(id, apply subs t, ae, TVoid) in
ret_ae, (locals, globals)
| _ -> inferred_expr, env) in
(inferred_expr :: acc, env) in
let inferred_program, _ = List.fold left infer_helper ([], env) program in
List.rev inferred_program

I

codegen.ml

open Ast
open Utils

module NameMap = Map.Make(String);;

let js_lib = "

immutable.min.js code inserted here.

not outputted in the report for convenience
and readability.

)

let merge_env env =
let locals, globals = env in
let merged_globals = NameMap.merge (fun k k1 k2 -> match ki1, k2 with
Some k1, Some k2 -> Some k1l
| None, k2 -> k2

https://github.com/facebook/immutable-js/blob/master/dist/immutable.min.js

| k1, None -> k1)
locals globals in

NameMap.empty, merged_globals

I

let

get _random () =

1000 + (Random.int 1000)

let block_template ret opt_body = match opt_body with
None -> Printf.sprintf "(function() { return %s; })()" ret

| Some(exprs) -> Printf.sprintf

I

"(function() { %s; \n return %s; })()" exprs ret

let if_template expr_pairs else_expr =

let
let
let
let
let

if_pair =
elif_pairs =
str_elifs =

id = "res_" ” string of int(get _random ()) in
elif temp = format_of_string "
List.hd expr_pairs in
List.tl expr_pairs in

List.fold _left (fun acc elif -> acc ~ (Printf.sprintf elif temp

else if (%s) { %s = %s; } \n" in

(fst elif) id (snd elif))) "" elif pairs in
"(function() { " ~

let " ~ id ~» ";\n" ~
if (" ~ (fst if_pair

str_elifs »

else { " ~id ~» " =

y~")y {"~id~»" =" 2 (snd if_pair) ~ "; } \n" ~

" N else expr A~ "; } \n" 2

"return " A~ id ~ " PHO"

match aexpr with

(Printf.sprintf "%s" (string_of float x)), env
(Printf.sprintf "\"%s\"" s), env
(Printf.sprintf "%s" (string_of_bool b)), env
"(undefined)", env

let rec js_of_aexpr aexpr env =
ANumLit(x,) ->
| AStringLit(s,) ->
| ABoolLit(b,) ->
| AvoidLit() ->
| AUnop(o, e,) ->
e env))), env
| ABinop(el, o, €2,) ->

let s2, = js
and s3, _ = js
Cons ->

| Append ->

| caret ->

| Eq ->

_of_aexpr el env
_of_aexpr e2 env
(Printf.sprintf
(Printf.sprintf
(Printf.sprintf

in (match o with
"(%s).insert(@, %s)" s3 s2)
"(%s).concat(%s)" s2 s3)
"(%s + %s)" s2 s3)

(match (Typechecker.type of el) with

(Printf.sprintf "%s%s" (string_of uop o) (fst (js_of_aexpr

TList() | Tbict() -> (Printf.sprintf "(Immutable.is(%s,

%s))" s2 s3)

-> (Printf.sprintf "(%s %s %s)" s2 (string_of op o) s3)), env

-> (Printf.sprintf "(%s %s %s)" s2 (string_of_op o) s3))

| Aval(s,) -> (match s with

"print_num" | "print_bool" | "print" | "print_str" | "print_list" |

"print_dict" -> s, env

env

| "to_str,ll | llhdll | "t]." | llemptyn | llmapll | n_Fil,ter‘u | ll_Foldlu | Illenll -> S_,

| "contains" | "keys" | "del" | "count" -> s, env
| ~ -> 1let locals, globals = env in
if NameMap.mem s locals
then (NameMap.find s locals), env
else if NameMap.mem s globals
then (NameMap.find s globals), env
else raise (Failure("Error: not found in globals " * s)))

AAssign(id, , expr,) ->
let locals, globals = env in
let alias = id ~ string_of_int(get_random ()) in
let new_locals = NameMap.add id alias locals in
let new_env = new_locals, globals in
(Printf.sprintf "var %s = %s" alias (fst (js_of_aexpr expr new_env))),

new_env

env

ABlock(es,) ->

let new_env = merge_env env in

let fold_func acc e =
let el, envl = (js_of_aexpr e (snd acc)) in
(el :: (fst acc)), envl in

let es, = List.fold left fold func ([], new_env) es in
(match es with
[] >
| x :: [] -> block_template x None
| x :: xs -> block_template x (Some (String.concat ";\n" (List.rev xs)))),

| AIf(apairs, ae,) ->

(Is_

let spairs = List.map (fun (p, e) -> ((fst (js_of_aexpr p env)), (fst
of_aexpr e env)))) apairs in

let se, _ = js_of _aexpr ae env in

(if_template spairs se), env

| AFunLit(formals, ae,) ->

let locals, globals = merge_env env in
let aliases = List.map (fun formal -> formal ~ string of int(get_random ()))

formals in

let new_locals = List.fold_left2 (fun acc formal alias -> NameMap.add formal

alias acc) locals formals aliases in

let string_formals = String.concat "," aliases in
let new_env = new_locals, globals in
let string_ae, _ = (match ae with

ABlock(aes,) -> begin
let fold func acc e =
let el, envl = (js_of_aexpr e (snd(acc))) in

(el :: (fst acc)), envl in
let es, _ = List.fold_left fold func ([], new_env) aes in
(match es with
[l ->""
| x :: [] -> block_template x None
| x :: xs -> block_template x (Some (String.concat ";\n" (List.rev

Xs)))), env
end
| _ -> raise (Failure("Unreachable state: FunLit"))) in
(Printf.sprintf "(function(%s) { return (%s) })" string_formals string ae), env

| Acall(e, es,) ->
let id = match e with
Aval(s,) -> if Typechecker.KeywordsSet.mem s Typechecker.spy keywords
then s
else (fst (js_of_aexpr e env))
| _ -> raise (Failure("Error: not a function call")) in

let es = List.map (fun e -> (fst (js_of_aexpr e env))) es in

let argl = List.hd es in

let fn_call = (match id with

"print_num" | "print_bool" | "print" | "print_str" | "print_list" |

"print_dict" -> "console.log(" ~ (String.concat "," es) ~ ")"

| "to_str" -> "(" ~ argl ~ ").toString()"

| "hd" -> "(" ~ argl ~ ").get(0)"

| "t1" -> "(" ~ argl * ").delete(0)"

| "empty" -> "(" ~argl A ") .isEmpty ()"

| "len" -=> "(" ~argl A~ ").count()"

| "filter" -> "(" ~ (List.nth es 1) ~ ").filter(" ~ argl ~ ")"

| "foldl" -> "(" ~ (List.nth es 2) ~ ").reduce(" ~ argl ~ ", " ~ (List.nth
es 1) ~ ")"

| "map" -> "(" ~ (List.nth es 1) ~ ").map(" ~ argl ~ ")"

| "contains™ -> "(" ~ argl ~ ").has((" ~ (List.nth es 1) ~ ").toString())"

| "count" -> "(" ~ argl A~ ").count()"

| "keys" -> "Immutable.fromJS(Array.from((" ~ argl ~ ").keys()))"

| "del™ -=> "(" ~argl A~ ").remove((" ~ (List.nth es 1) ~ ").toString())"

|

_ -> Printf.sprintf "%s(%s)" id (String.concat
fn_call, env

es)) in

| AListLit(es,) -> "Immutable.List.of(" ~ (String.concat ", " (List.map (fun e

-> (fst (js_of_aexpr e env))) es)) ~ ")" , env

| ADictLit(kvpairs,) ->
let pairs = List.map (fun (k, v) -> (fst (js_of_aexpr k env)) ~ ":" ~ (fst
(js_of _aexpr v env))) kvpairs in

"Immutable.Map({ " ~ (String.concat "," pairs) ~ " })", env

| AElement(id, ae,) ->

let locals, globals = env in

if NameMap.mem id locals

then "(" ~ (NameMap.find id locals) ~ ").get((" ~ (fst (js_of_aexpr ae env))
A ").toString())", env

else if NameMap.mem id globals

then "(" ~ (NameMap.find id globals) ~ ").get((" ~ (fst (js_of_aexpr ae env))
A "), toString())", env

else raise (Failure("Error: not found in globals " ~ id))

I

let js_of_aprog prog =
let js_exprs, _ = List.fold left (fun (acc_js, acc_env) aexpr ->
let el, envl = js_of _aexpr aexpr acc_env in
(el :: acc_js), envl) ([], (NameMap.empty, NameMap.empty)) prog in
let base = js_1lib ~ "\n\n" in
base ~ (String.concat ";\n" (List.rev js_exprs))

runtests.ml (test runner modified from JSJS open source code)
open Printf
let test_location = "test/"

type test_status = Pass | Fail
type color = Red | Green

let colorize msg c =
let pad = match c with
Red -> "31"
| Green -> "32" in
let template = format_of_string "
\027[%sm%s" in
printf template pad msg;
flush stdout;

oo
B2]

let run_cmd cmd =
let chan = Unix.open_process_in cmd in
let res = ref ([] : string list) in
let rec helper () =
let line = input_line chan in
res := line :: !res;

https://github.com/prakhar1989/JSJS/blob/master/test/run.ml

helper () in
try helper ()
with End_of_file ->
let status = Unix.close_process_in chan in
let cmd_result = match status with
Unix.WEXITED(c) -> if ¢ == @ then Pass else Fail
| _ -> Fail in
(List.rev !res, cmd_result)

..
)

let diff_output lines filename
let dump_to_file lines fname
let oc = open_out fname in
List.iter (fun line -> fprintf oc "%s\n" line) lines;
close_out oc in
let _ = dump_to_file lines "test_output.txt" in
let cmd = sprintf "diff -B test_output.txt %s" filename in
let diff_output, status = run_cmd cmd in
begin
match status with
Pass -> None
| Fail -> Some(String.concat "\n" diff_output)
end

)
)

let run_testcase fname =
let test_type, test_name =
match (Str.split (Str.regexp "-") fname) with

"fail™ :: x :: [] -> Fail, x
| "pass" :: x :: [] -> Pass, X
| _ -> raise (Failure ("Invalid file format - " ~ fname ~ ". Must have only one
I_lll)) in

let fpath = Filename.concat test_location fname in
let cmd = sprintf "./spy.out %s" fpath in

let output_filename = Str.replace_first (Str.regexp "spy") "txt" fname in
let output_path = Filename.concat test_location output_filename in

let cmd_output, status = run_cmd cmd in
match test_type, status with
Pass, Pass -> begin
let node_output, status = run_cmd "node out.js" in
(match diff_output node_output output_path with
None -> colorize (sprintf "¢/ " ~ fname) Green; Pass
| Some(op) -> begin
colorize (sprintf "® %s" fname) Red;

colorize (sprintf "%s\n\n" op) Red;
end; Fail)
end

| Fail, Fail -»
(match diff_output cmd_output output_path with
None -> colorize (sprintf "¢/ %s" fname) Green; Pass
| Some(op) -> begin
colorize (sprintf "% %s" fname) Red;
colorize (sprintf "%s\n\n" op) Red;
end; Fail)

| Pass, Fail -> begin
colorize (sprintf "% %s" fname) Red;
colorize "Expected test case to pass, but it failed" Red;
end; Fail

| Fail, Pass -> begin
colorize (sprintf "% %s" fname) Red;
colorize "Expected test case to fail, but it passed" Red;
end; Fail

..
)

let run testcases () =

let total = List.length testcases in

let passing = List.fold_left (fun acc t -> acc + (match run_testcase t with Pass
-> 1 | Fail -> @)) 0 testcases in

let template = format_of_string "\027[37m

Test Summary

All testcases complete.
Total Testcases : %d

Total Passing : %d
Total Failed ¢ %d
\n" in

let failures = total - passing in
Printf.printf template total passing failures;
if failures = © then Pass else Fail

)
)

(* returns a List of file names in a directory *)
let get_files dirname =
let d = Unix.opendir dirname in
let files = ref ([] : string list) in
let rec helper () =
let fname = Unix.readdir d in

files := fname :: !files;
helper () in
try helper () with End_of_file -> Unix.closedir d; files

let init ()
let files I (get_files test_location) in
let testcases = List.filter
(fun £ ->
try ignore (Str.search_forward (Str.regexp ".spy") f 0); true
with Not_found -> false)
files in
match (run testcases ()) with
Pass -> exit o
| Fail -> exit 1

init ();

Makefile

spy:
ocamlbuild -j @ -1lib str -r -use-ocamlfind -pkgs core -use-menhir spy.native

@mv spy.native spy.out

.PHONY : clean
clean:
ocamlbuild -clean

.PHONY: test

test:
ocamlc -o run-tests.out str.cma unix.cma test/runtests.ml
@rm test/*.cm*

.PHONY: run-test
run-test:
@make
@make test
@./run-tests.out
@rm test_output.txt

Appendix

This project would not have been possible without the help of online resources and open source code.
The following references were invaluable in developing this project:

WO NOUL A LNPRE

http://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.Make.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html

http://jsjs-lang.org/
http://www.cs.columbia.edu/~sedwards/classes/2016/4115-spring/reports/Scolkam.pdf
https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system
https://en.wikipedia.org/wiki/Type_inference
https://github.com/prakhar1989/1SJS/blob/master/src/typecheck.ml

Various stack overflow posts

http://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.Make.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html
http://jsjs-lang.org/
http://www.cs.columbia.edu/~sedwards/classes/2016/4115-spring/reports/Scolkam.pdf
https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system
https://en.wikipedia.org/wiki/Type_inference
https://github.com/prakhar1989/JSJS/blob/master/src/typecheck.ml

