PLOG Proposal: A programming language for graph
operations

wab2125@columbia.edu
COMS 4115 Summer session - Project proposal

June 9, 2016

Introduction:

Graphs are familiar structures used throughout mathematics and computer science—
structures containing elements commonly known as nodes and edges. In practice, a par-
ticular node typically refers to a particular (e.g. physical or conceptual) entity, and an edge
might refer to a particular kind of relationship existing between two nodes. Properties are
also frequently assigned to nodes and edges (e.g. as "keys” and their associated values). The
resulting structure is a property graph, which can be modeled and operated on with PLOG.

PLOG, the Programming Language for Operations de Graphes, was designed as an ap-
proach to modeling with property graphs. It allows users (of the language) to perform graph
queries and updates concisely with pattern-matching, and to enforce “rules” upon graphs,
but still allows users to specify “lower-level” algorithms. It’s intended for simple applications
that wish to model and interact with data as property graphs, e.g. for (establishing flow
rates in) models of computer networks, (establishing relationships and inferring patterns of)
social networks, et cetera.

The remainder of this document describes aspects of the PLOG language in some detail.
It should be noted that the constructed compiler for PLOG will target the Python language.

Parts of PLOG:

PLOG programs are composed of 2 main segments of code: 1) type and global object
definition, and 2) the main procedure.

1) Type and global object definition: This segment of code is essentially the global
scope of the program. All types—i.e. edge types and node types—are defined globally.
Additionally, functions (if applicable) must be defined in this global scope; nested functions
are not permitted. Optionally, graph objects may be defined in this scope.

2) Main procedure: The “main” procedure is where program execution takes place.
Throughout the main procedure, global types and objects may be referenced and accessed,
functions may be called, and local graph objects (i.e. graphs, nodes, edges) may be created,
referenced, updated, and deleted. Additionally, variables of primitive types (e.g. int, float)
can be used.

—Primitive types:

PLOG supports the following common types—with their usual meanings— “natively”:

- bool, char, int, float, string

- wab2125@columbia.edu 1

PLOG Proposal: A programming language for graph operations

And additionally supports lists and dictionaries (“dicts”; key-value stores). Lists can
either be empty (‘[]’) or contain elements of exactly 1 type. Dictionaries map keys—all of 1
type—to their corresponding values.

—~Graph element types:

node: Node types can be created. A node type is defined by a name and an associated
pattern (discussed below, in “Pattern-matching”). Node types allow queries and updates to
graph objects to be stated concisely. For example, the following code defines a “grandparent”
node type, assuming a “parent” edge is already defined (where “X parent-> Y” means: “X’s
parent is Y”):

node grandparent = z in x parent-> y parent-> z

In the above example, a “grandparent” is defined as any node which is the parent of a
parent. We will see soon how such node (and edge) types can be used.
edge: Similarly, new edge types can be created. An edge type is given by its name, e.g.:

edge parent, ancestor

declares two new edge types: “parent” and “ancestor”. (As stated before, all types are
defined globally.)

—~Graph and graph element instances:

Node and edge types may be defined globally, but instances of node and edge types must
exist within a graph. A graph object is declared with the “graph” keyword, and may be
initialized with nodes and edges within brackets, as below:

graph myGraph { node Jimmy }

which initializes “myGraph” to contain a single node, “Jimmy”.

Nodes can explicitly be added to graphs by declaring them within the brackets following
a graph name. For example, adding two more nodes to the above graph can be accomplished
with

myGraph { node Craig, Jennifer }

which updates “myGraph” to now contain the 3 declared nodes.
Edges must be declared “between” two node names (the tail node and the head node).
For example, given the “parent” edge declared earlier,

myGraph { Jimmy parent-> Craig, Jennifer }
adds two edges to myGraph: one “parent” edge from Jimmy to Craig (tail to head), and
another “parent” edge from Jimmy to Jennifer (tail to head).

Nodes and edges can be deleted with the “del” operator, as in:

myGraph { node NewGuy; Jimmy ancestor-> NewGuy; del Jimmy ancestor-> NewGuy }

- wab2125@columbia.edu 2

PLOG Proposal: A programming language for graph operations

The deletion of a node also deletes all of the edges directly connected to it.

—Type inference (basically, none of it):

Type inference is essentially not carried out by a PLOG compiler; variable types must be
explicitly stated upon declaration. In particular, lists and dictionaries must also be declared
with the element type they contain (for lists) or the key type they contain (for dicts).

—Control structures and loops:

PLOG supports common ‘if/else’ branching and ‘for/while’ looping. Both ‘if” and ‘while’
statements require an expression evaluating to a boolean value (as is typical), while the ‘for’
loop makes use of the ‘in” keyword to loop over variables of a specified type within a given
graph. Note: it’s not required that the specified type be the only type of object within the
graph; the loop will iterate over only objects of the specified type within the graph. For
example:

for node n in myGraph { n.iteratedOver = true }

—Properties:
Properties can be explicitly added to nodes, e.g. as in:

myGraph { Jimmy.age = 10; Craig: age = 46, gender="M’ }

Dot (*.”) notation allows the setting/getting of individual properties by their name, and
colon notation allows you to specify multiple properties (their names and values) at once.
(Note: separate statements can be executed on the same line if separated by a semi-colon;
otherwise, a newline indicates the end of a statement.)

Edges can also possess properties. Assuming the “loves” relation was defined,

myGraph { Craig <-1/loves-> Jennifer where 1.howMuch = ‘‘a lot’’ }

declares two new edges: “Craig loves-> Jennifer” and “Jennifer loves-> Craig”, and
assigns the property “howMuch” to have the value “a lot” for both edges.

—Pattern-matching:

PLOG supports pattern-matching for queries and updates performed on graph objects.
Querying a graph object—as given below—with a pattern will essentially return a “(sub)graph
view” of the original graph object. Effectively, this returned (sub)graph view is a graph ob-
ject, but only with references to the pattern-matched elements of the original graph. This
querying/pattern-matching is evoked by:

graph mySubgraphView = graphName(pattern)
where ‘pattern’ is the pattern to match against the graph (i.e. its elements). For example:

graph mySubgraphView = myGraph(e in x e/parent-> y) // Graph of only parent edges
for edge e in mySubgraphView { e.as0f = ‘‘2016-06-07’’ }

—”Update rules”:

“Update rules” can be defined at the global level, which can effectively constitute a kind
of “extended definition” of certain types. They can be thought of as conditions that are
always checked and rules that are enforced. For example, in addition to the “edge parent,
ancestor” declaration described above, the following rules can be placed in the global scope:

- wab2125@columbia.edu 3

PLOG Proposal: A programming language for graph operations

if x parent-> y { x ancestor-> y }
if x ancestor-> y and y ancestor-> z { x ancestor-> z }

«.

This is taken to mean: any time there is a node ‘x’ whose parent is ‘y’, the edge “x
ancestor-> y” is made sure to exist: if it doesn’t already exist in the graph of ‘x’ and
‘y’, it is created. The second rule essentially enforces the transitive nature of the intended
“ancestor” relationship.

—Functions:

Functions may be defined at the global scope. Defining a function consists of: 1) the ‘func’
keyword, 2) the function name, 3) (optionally) declaring the function’s input variable(s) and
their types (enclosed in parantheses), 4) (optionally) declaring the function’s return type(s),
and 5) the function body, enclosed with braces.

Two example function definitions are given:

func renameAllHumans(graph g, string newName)

{
for node n in g(x.genusSpecies = ‘‘Homo sapiens’’) { n.name = newName }
}
func getDummyIntsAndString() return int list, string list
{
return [0,1,2,3,4], [¢‘Zero’’, ‘‘One’’, ‘‘Two’’, ‘‘Three’’, ‘‘Four’’]
}

Example Application:
rel distance

graph Neighborhood {
node Me, Jimmy, Sally, Bobby, Tiffany
Me d/distance-> Jimmy, Sally where d.value = 6
Me d/distance-> Bobby where d.value = 2
Bobby, Sally d/distance-> Tiffany where d.value = 1 }

func DAlg (graph mygraph, node start, node end) return int dict, node dict
{

node list Q = list(for node n in mygraph) // list() creates a list from ‘for’

int dict distances; node dict previous
for node n in Q {
distances[n] = INF // ¢‘Infinity’’, a defined constant
previous[n] = NIL /x ‘‘Null’’, a defined constant */ }
distances([start] = 0 // More dict setting

while length(Q) > 0 { // length() returns list length

- wab2125@columbia.edu 4

PLOG Proposal: A programming language for graph operations

node closest
int min_dist = INF
for node n in Q {
if distances[n] < min_dist {

min_dist = distances|[n]

closest = n } }
if closest == end { break } // break exits ‘‘nearest’’ loop
Q = remove(closest, Q) // remove() returns a list minus the element

for node out in closest.out_nodes {
int out_dist = d.value in closest d/distanceTo out
int new_dist = distances[closest] + out_dist
if new_dist < distances[out_dist] {
distances[out] = new_dist
previous[out] = closest } }

}

return distances, previous

func main {

int dict distances, node dict previous // Next line for purposes of this document..
= DAlg(Neighborhood, Neighborhood(Me), Neighborhood(Tiffany))

node list S = []

node n = Neighborhood(Tiffany)

while previous[n] != NIL {
S = prepend(n, S) // prepend() adds to the beginning of a list
n = previous[n] }

S = prepend(n, S)

for node n in S { print(string(n) + > °) } // print() prints

- wab2125@columbia.edu 5

