COMS W4115
Programming Languages and Translators
Homework Assignment 3

Prof. Stephen A. Edwards Due July 22nd, 2016
Columbia University at 11:59 PM

Submit solution on paper (no email). Please write your name clearly on the paper.
Do this assignment alone. You may consult the instructor and the TAs, but not other students.

1. For the following C array,

   ```
   int a[2][3];
   ```

 assume you are working with a 32-bit little-endian processor with the usual alignment rules (e.g., a Pentium).

 (a) Show how its elements are laid out in memory.
 (b) Write an expression for the (byte) address of
       ```
       a[i][j]
       ```
 in terms of ```a, i,``` and `j`.
 (c) Verify parts a) and b) by writing a small C program
 that allows you to test your hypothesis. Examine
 the assembly language output with the C compiler's
 `-S` flag (e.g., `gcc -O -S array.c`). Such a program
 should be simple and contain and access such an
 array, but not be so simple that the compiler can
 optimize most of it away. Turn in an annotated as-
 sembly listing that explains how it verifies your hy-
 pothesis. Make sure the assembly listing is no more
 than about 40 lines, either by simplifying your pro-
 gram or trimming the output.

2. For a 32-bit little-endian processor with the usual align-
 ment rules, show the memory layout and size in bytes of
 the following three C variables.

   ```
   union {
     short a; /* 16-bit */
     struct {
       int b; /* 32-bit */
       char c; /* 8-bit */
     } s;
   } ul;
   }
   ```

   ```
   struct {
     short a;
     char b;
     short c;
     int d;
   } s1;
   ```

 3. Draw the layout of the stack just before `bar` is called in
   ```
   void bar(int x, int y);
   ```

   ```
   void foo(int a, int b)
   {
     int c, d, e;
     bar(1, 2);
   }
   ```

 4. Draw the layouts of a Circle and a Rectangle object as
 well as the virtual tables for their classes. Indicate how
 the runtime decides to call the appropriate `area` function
 for `s1` in `main`.

   ```
   public class Shape {
     public double area() { ... }
   }
   ```

   ```
   class Circle extends Shape {
     private double diameter;
     public double area() { ... }
   }
   ```

   ```
   class Rectangle extends Shape {
     private double height, width;
     public double area() { ... }
   }
   ```

   ```
   public class Main {
     public static void main() {
       Shape s1 = new Rectangle(35, 42);
       System.out.println( s1.area() );
     }
   }
   ```