TENLAB Programming Language Final Report

Mehmet Turkcan, Dallas Jones, Yusuf Cem Subakan
{mkt2126,drj2115,ys2939 } @columbia.edu

May 11, 2016

Contents

1 Introduction 4
1.1 TENLAB: 4
1.2 Related Work: 4
1.3 Goals: 4

1.3.1 Flexibility: 5
1.3.2 Clarity:)
1.3.3 Symbiosis: 5

2 Tutorial 6
2.1 Compiling and Running Your First TENLAB Program: 6
2.2 Dealing with Tensors: 7
2.3 Just an Another Example 8

3 TENLAB Language Reference Manual 9
3.1 Introduction. 9
3.2 Lexical Conventions 9

3.2.1 Identifiers 9
322 Keywords 9
3.2.3 Functions and Blocks: 9
3.2.4 Control Flow: 9
3.2.5 Types: . . e 10
3.2.6 Whitespace 10
327 Comments. 10
3.2.8 Statement Terminator 10
3.29 DataTypes 10
3.2.10 Conversions i e e e 10
3.2.11 Operations 11
3.2.12 Arithmetic and Relational Operators 11
3.3 Syntax 11
3.3.1 Program Structure 11
3.3.2 Statements 12
3.3.3 While Statement L. 14
3.3.4 For Statement 14
3.3.5 Function Definitions 14
3.3.6 Built-In Functions 14

4 Project Plan 16

4.1 Planning Processo 16

4.2 Specification. oL

4.3 Development Process,
4.4 Team Responsibilities 0o L.
4.5 Development Environment oL
4.6 Programming Style Guide L.
4.7 Project Timeline o

Architectural Design

5.1 Compiler and Block Diagram:
5.2 Scanner: e
5.3 Parser:
5.4 Code Generation:
5.5 CPFunctions:
Testing

6.1 From Source to Target
6.2 Test Suites and Automation

Lessons Learned & Advice

7.1 Mehmet Turkcan:
7.1.1 Lessons Learned:
7.1.2 Advice:

Appendix

Project Log

19
19
20
20
20
20

21
21
23

25
25
25
25

26

62

1 Introduction

1.1 TENLAB:

TENLAB is a MATLAB-like general numerical computation language. TENLAB
is designed to be easy to learn and work with, using a natural and streamlined
syntax whilst retaining enough versatility to be powerful enough to address the
needs of those requiring manipulation of multidimensional arrays for scientific
applications. The syntax of TENLAB resembles MATLAB heavily with a few
slight changes, but the way tensors are handled are different and control flows
operate in a fundamentally different fashion. The TENLAB compiler outputs C
code, which can then be compiled into a native binary or a MEX function for
use with MATLAB.

1.2 Related Work:

There exist a wide number of languages with different levels of multidimensional
array support and distinctive capabilities. In machine learning community, lan-
guages like MATLAB [1], R [2] and the ever-popular NumPy+Python [3] work-
flow as well as libraries like Theano [4], Google’s TensorFlow [5] and the recent
TensorLab [6] for MATLAB are used to perform a wide variety of domain-specific
or broadly general computing tasks. These languages usually depend on either
the needs of their authors or the ingenuity and participation of the users and
extensive libraries to find their own niche and become successful.

Even though such languages generally thrive thanks to these implicit posi-
tive feedback loops, this popularity leads to inescapable bottlenecks at times in
which even the most innocuous assumptions lead to difficult situations for the
programmer who seeks the environment that offers the shortest amount of steps
between the task and what the language offers.

1.3 Goals:

Whereas the syntax of TENLAB does resemble these aforementioned general-
purpose computation languages to some extent, the general method of operation
for the language is noticably different. Assignments to TENLAB tensors result
in elements getting added to the tensors instead. Shape information and the size
of the content of tensors are generally independent of each other, and users can
reshape and change the values in a tensor at will. This design choice allows for
a huge number of possible uses.

1.3.1 Flexibility:

TENLAB allows programmers to alter everything about the internal represen-
tation of tensors, allowing paradigms with different internal representations of
tensors to be used according to the preferences of the programmers.

1.3.2 Clarity:

TENLARB is a language that seeks to allow the user to do whatever he/she wants
without previous planning about the structure of the program. Every variable
keeps track of its past by default and the language also contains a number of
powerful built-in functions that allow users to control the memory if they want
to. TENLAB is also designed to be an easy language which can be learned in
minutes.

1.3.3 Symbiosis:

TENLAB effortlessly interfaces with MATLAB via the use of the MEX files,
giving users the full capabilities of MATLAB at will. This feature is inspired by
the powerful CVX system [7], which is a massively useful tool for addressing a
number of difficult optimization problems efficiently. Moreover, as the expected
audience for TENLAB consists of individuals who are probably well versed in
MATLAB and would rather continue to stay in MATLAB rather than to use
two languages concurrently, this aspect of the language is crucial to its future as
a viable tool.

2 Tutorial

TENLAB has a clean and descriptive syntax that syntactically resembles MATLAB
as suggested by the name; however, control flow statements as well as the gen-
eral minutiae of the language are slightly different and put the multidimensional
nature of the structures the code is manipulating to the forefront.

2.1 Compiling and Running Your First TENLAB Program:

In order to generate executable TENLAB programs, you need to have gcc
installed and ready to go in your PATH. The TENLAB compiler generates C
source code by default. Enter the /tenlab_src folder and type make to build
the TENLAB-to-C compiler tenlab. You can then run tenlab directly on your
TENLAB source files, which will generate C source files with .c extensions auto-
matically. These can then be compiled directly into binaries by calling gcc. Or,
if you would like to use TENLAB along with MATLAB directly, you can run
tenlab with the -m parameter to generate MEX-ready TENLAB code.

The general structure of a TENLAB program resembles an amalgamation
of the function files and scripts of MATLAB that most MATLAB users have
secretly desired at one point. The following program demonstrates a number of
properties of the language:

Program 1: A Demonstration of TENLAB

function triple(X);
X =X x 3;
return X;

end ;

tensor X;

X = 5;

X=triple (X);

print (X);

A0utput :

#5.000000

#15.000000

Observe the following:

e A TENLAB program consists of a number of function declarations that
follow a script block that operates like a main function. Both the functions
and the script begin with the declarations of the tensors that exist within
their scope followed by the rest of the code.

e The built-in print function allows the printing of the contents of tensors,
a single element per line.

e Assignments add elements to tensors, rather than replacing their contents.
6

2.2 Dealing with Tensors:

User-implemented tensors in TENLAB are represented using identifiers. An
identifier begins with a letter and continues with a sequence of letters or integers.
The only data type in TENLAB is that of tensor. Tensors need to be declared
at the beginning of the functions or the script block. Values can be assigned to
tensors in the following fashion:

tensor a;
a = b; /% Create a 1D temsor with a single
/4 element

tensor b;

b = [5]; /% Same as the previous assignment
tensor c;

c = [[5,4],[4,3]1]; % Create a 2D tensor i.e. a matriz
/4 with elements [5,4;4,3]

A very interesting and unique feature in TENLAB is that it allows for repeated
matrix products across different dimensions of the tensors using a very terse
syntax. Consider the following example:

Program 2: A Gentle Introduction to the Tensor Product

tensor X;

tensor Y;

tensor Z;

X [[3,4]1,[4,51];

Y = [[1,2],[3,4]1]1;

Z = [[0,0],[0,01];

Z {1} {2,2} x {2} .*x {2,2} Y {1};
print (Z);

Curly brackets have a very specific meaning in TENLAB. They hold lists of
integers separated by , characters. The second and the fourth lists give the
shape to be used for X and Y respectively during the tensor product. The third
and the fifth lists determine the dimensions along which the product will be
taken. The 1 in the first list shows that we will be taking the sum along these
dimensions corresponding to the third and the fifth lists. If it was a zero, we
would just be returning the elementwise product along the specified dimension.
What does this operation, in its current state, correspond to? Why, it is the
matrix product!

Now, the more interesting part of the language is that these third and fifth
lists can be as large when the input dimensionality is not this small. Note
that the first list should have the same number of elements as the third and
the fifth. With this method, elementwise and matrix-like products involving
arbitrary numbers of dimensions could be written in a single statement. Unless
you require an application in which this will work,

7

2.3 Just an Another Example

Let us now give some examples of more classical programs to let you become
more familiar with the language. Consider the following greatest common divisor
implementation to look at how control flow statements operate:

Program 3: Greatest Common Divisor

/% Beginning of Function Declarations
function gcd (Z, X, Y);

Z =X =Y,
while (Z);
if (X > Y);
X =X -Y;
else;
Y =Y - X;
end;
Z =X 1=1Y;
end ;

return X;

end ;

/4 Beginning of the Script
tensor A;

tensor B;
tensor C;
tensor Z;

A = 12;

B = 14;

A = gcd(C,A,B);
print (A);

A = 3;

B = 5;

A = gcd(C,A,B);
print (A);

Again, observe the way the language is structured. While loops return true as
long as the last element in the relevant tensor is positive.

3 TENLAB Language Reference Manual

3.1 Introduction

This manual describes TENLAB, a programming language aimed at the use
and manipulation of multidimensional arrays for scientific applications. Fea-
tures defining the language include its unique handling and freeform handling
of tensors, a simple syntactic structure and a powerful implementation of the
general Tensor-Tensor product.

3.2 Lexical Conventions
3.2.1 Identifiers

In TENLAB, identifiers are sequences of letters, digits and the underscore char-
acter; the first character of an identifier needs to be a letter. Identifiers in
TENLAB represent programmer-defined tensors. The regular expression that
matches identifiers is thus

['a'—‘z‘ 'A'—‘Z‘][‘a'—'z‘ TAY =7 '0'-'9! l_l]*

3.2.2 Keywords

Keywords are restricted to special use and as such cannot be used as identifiers.
have particular use cases.

3.2.3 Functions and Blocks:

The function keyword indicates the beginning of function blocks. The end key-
word marks the end of statement blocks.

function
end

3.2.4 Control Flow:

The following keywords display the control flow statements available in TENLAB:
if
else

while
for

return

3.2.5 Types:

There is a single primitive type in TENLAB, and it is tensor:

tensor

3.2.6 Whitespace

In TENLAB, whitespace is normally ignored, unless a comment has been de-
tected.

3.2.7 Comments

Comments start with the % symbol and continue until the end of the end-of-1line
symbol.

3.2.8 Statement Terminator

The ; token is used to mark the end of statements.

3.2.9 Data Types

The only type supported is called tensor. Tensors represent arbitrary multidi-
mensional arrays. Elements of tensors are floating point numbers with double
precision.

In addition to elements, each tensor also has a shape which specifies the
dimensionality of the tensor. TENLAB is not strict about the limits to the
number of elements as constrained through the shape parameters. That is,
altering the shape of a tensor does not change anything about its content. Shape
can be altered using the content of an another tensor using the built-in reshape
function. This allows flexibility in regards to the various capabilities of TENLAB.

3.2.10 Conversions

Tensors are converted into integers internally when certain operators, specifically,
equality operators would like them to be.

10

3.2.11 Operations

TENLAB supports the following operations:

3.2.11.1 Value Stacking

Single assignment signs indicate the stacking assignment, the stacking tensor
assignment or the tensor product:

'=! : Assignment or Tensor Assignment

3.2.12 Arithmetic and Relational Operators

All arithmetic operations work as expected; in an expression, the identifier used
for a tensor specifically refers to its last element. Precedence of these expressions
are the same as in C.

addition
subtraction
multiplication

'+ : Elementwise
i : Elementwise
P! : Elementwise
A : Elementwise
Elementwise

division
equal to

Elementwise

not equal to

Elementwise smaller than
f<=" Elementwise smaller than or equal to
> Elementwise greater than
'>=! Elementwise greater than or equal to
3.3 Syntax

3.3.1 Program Structure

A TENLAB program consists of a number of function declarations followed by
a script block. Both the functions and the scripts begin with a declaration of
the local tensors. The script corresponds to the 'main’ function that actually
runs during the execution of a program.

3.3.1.1 Tensor Declarations

Tensors can be declared at the start of the function blocks or the script. Tensors
declared within functions are not allowed to leave the scope of the function.

tensor identifier;

11

3.3.2 Statements

3.3.2.1 Stacking Tensor Assignment

TENLAB allows users to initialize the elements in a tensor or to stack elements
to tensors using the following form:

identifier = tensor_list;

All tensors have a certain shape, and a number of elements. Shapes and the
number of elements are not strictly connected.

Whereas tensors are abstracted as nested lists for users’ convenience, under
the hood they are one dimensional. In the list format, elements are separated
using ,’s. A tensor list matches the regular expression:

[TCLrot-rer v, [t rartetz tA =tz] ([0t
140011000 =19 1%) [(['0'='9 1+ ['. ' 1[0 =19 1+)) (['e"
E'I00-0 +0170000-9 T D ([0 -19 T+(['e’ 'E'I["
=t 17[000-19114))))+ 1] "

Checking of the validity of the sequence itself is done at compile time. Con-
ventions for reading the tensors mostly follow the classical NumPy architecture;
lists of elements in square brackets are stacked inside each other, the outermost
layer corresponding to the first dimension in the shape information of the tensor.

Stacking assignments result in the concatenation of the shape information
for the assigned tensors, and linear stacking of their elements to the end of the
tensor in row-major ordering.

3.3.2.2 Stacking Assignment

In addition to the form above, TENLAB also allows users to initialize the ele-
ments in a tensor or to stack elements to tensors using the following form:

identifier = expression;

Which adds an element to the end of the tensor. Expressions in TENLAB
support the use of literals, identifiers and paranthesized expressions connected
through arithmetic and relational operators. Literals can be floating point num-
bers or integers, but are internally are kept as floating point numbers. Note that
using an identifier within an expression only refers to its first element. After a
stacking assignment, to keep track of the shape information, first dimension of
the tensor is incremented by one.

12

3.3.2.3 Tensor Product

In addition to the aforementioned assignment methods, TENLAB also contains
a powerful and terse implementation of the tensor product.

ID3 = {list1l} {1list2} ID1{1ist3} .x {list4} ID2 {1listb}

Here, ID1, ID2 and ID3 refer to different tensor identifiers. lists are lists of
integers separated with ,’s. 1istl, list3 and listb should have the same
length.

Elements of 1ist1 are either 0 or 1. 1ist3 and 1ist5 contain the correspond-
ing indices over which the tensor product will be taken. That is, the elements
in the dimension indexed by the first element of 1ist3 will be multiplied with
the elements in the dimension indexed by the first element of 1ist5 and so on.
list2 and list4 contain the dimensionalities for the tensors that are going to
be used for the product.

For the indices corresponding to the 0’s of 1ist1, only the elementwise prod-
uct is taken. If the index of 1list1 is 1 for that dimension instead, the sum will
be taken along the dimension after the multiplication is computed; that is, the
product will act similar to a matrix product and the corresponding dimensions
will collapse. Linear indexing of tensors is assumed to be column-major.

3.3.2.4 Control Flow Statements

A group of statements could be chained back to back, but only when expected
by conditional statements if, while or for. Collectively we can refer those as
statement lists.

Conditional statements are supported, in its most basic sense, through the
if /else keywords. The if keyword could be used without an else like

if (expression);
statement_list;
end ;

or it can be used in conjunction with an else as follows:

if (expression);
statement_list;
else;
statement_list;
end ;

If statements are considered true if the last element stored in the expression
returns a positive number.

13

3.3.3 While Statement

The while keyword defines a loop statement that has the following structure:

while (ID);
statement_list;
end ;

and the loop will continue as long as the last element of the identifier ID is
positive. A very important feature in TENLAB is that these statements check
the last value stored in the tensor.

3.3.4 For Statement

The for statement is in the MATLAB fashion:

for ID1 = 1ID2;
statement_1list;
end ;

The statements in statement_list run through for each of the elements of ID2,
with ID1 getting assigned the values in ID2 one by one.

3.3.5 Function Definitions

While different than the usual MATLAB syntax, functions are defined a similar
manner to the preceding statements:

function function_name (identifier_list);
statement_list;
return ID;

end;

and can be called at will. The syntax for a function call is

function_name (identifier_list)

An identifier list is a list of identifiers separated by the ’,” character. To promote
memory safety, the returned identifier ID should be one of the inputs. A function
could have multiple return points, using the control flow statements. Functions
don’t need to return anything.

3.3.6 Built-In Functions

3.3.6.1 MEX Input and Output

TENLAB offers two built-in functions for accessing inputs from MATLAB via
the MEX interface and for the outputting formatted data.

14

In the C/C++ level, MEX inputs are accessed via the use of an integer
corresponding to the index of the input to the MEX function. Similarly, the
input function takes in a TENLAB tensor identifier and an integer corresponding
to the equivalent input index. To be consistent with the rest of the language
and following the MATLAB convention, in TENLAB these indices start from 1.

The output function works similarly. Given a tensor input and an index, at
the end of the script the TENLAB program is going to output that tensor.

3.3.6.2 Printing Functions

e TENLAB programs perform printing via calls to the print function. The
print function takes in a single tensor as its input argument, and prints
all its values one by one. The shape information is disregarded during this.

e Similarly, the shape function can be used to print the contents of its sole
argument, an identifier.

3.3.6.3 Clear and Clean

e The clear function can be used to clear the contents of a tensor. However,
it does not remove a tensor completely from memory.

e The more powerful clean function can be used to clean the tensor along
with its identifier from the memory completely. Both of these functions
take a single tensor as input.

3.3.6.4 Pop, Dequeue, Length and Set

e The pop function can be used to remove the last element a tensor. The
dequeue function can be used to remove the first element. length function
can be used to add the current number of elements to the tensor. All of
these functions take a single tensor identifier as input.

e The set function takes three tensors, and can be used to change the el-
ement of the first tensor using the shape of the first tensor as the shape
and the content of the second tensor as the indices. The last element of
the third tensor is the element that gets set. If the indices correspond to
a larger index than the ones in the tensor, enough 0’s are appended to the
content of the tensor to broadcast the shape information.

15

4 Project Plan

4.1 Planning Process

As a group, we have decided to seperate the work into different independent
parts that could then be compiled into a whole without any need of rigorous.
We had regular weekly meetings with Professor Edwards and we discussed our
progress as a team regularly as well.

4.2 Specification

From the beginning of the project, we had a clear niche audience to target for the
project along with a huge number of backup plans for possible bugs and design
issues from which our future architectures could perhaps not recover. Thanks
to the relative simplicity and ambiguity of the initial proposal for our language,
our meetings with Professor Edwards helped us organically consider alternatives
and reshape the the various subtle details of the language and how some parts
of the code could be rendered more optimized as we did not think that we would
be able to match the performance of languages like MATLAB without the use of
extrinsic libraries or clever tricks, a very substantial threat which would render
our language redundant.

Due to several problems we had with memory handling in C in regards to
dynamic array structures that could conceivably be expected to contain and
manipulate large blocks of data with relative ease for the machine learning ap-
plications as well as the comparative inexperience of our team members in such
matters, we have ultimately decided to find a compromise between simplicity and
extensibility that renders TENLAB rather unique compared to its alternatives.

4.3 Development Process

Due to the relative simplicity of our language in regards to the scanner and
parser, those modules were created very early on during the writing of the lan-
guage reference manual in order to promote efficiency in the future. Code genera-
tion for functions as well as the control flow statements were similarly completed
long before the finalization of the rest of the subtler specifics of the language.

4.4 Team Responsibilities

At the beginning of the project, Yusuf Cem Subakan wanted the leadership
position that would entail the responsibilities of Language Guru and Project
Manager. Even though he was against the idea of weekly meetings, suggesting
that they do not work and stating that he always finished the group projects he
took part in himself, thanks to the directives in the course announcements he
agreed to weekly meetings with Professor Edwards. Due to the various problems
he had over the course of the semester, the roles of the team members needed
to be more and more fluid over time. Other members of the team held weekly

16

meetings in addition to those with Professor Edwards to discuss the situation of
the codebase and how it could be improved.

Team Member Responsibility

Mehmet Turkcan Code Generation, Test Case Generation, C Libraries,
Testing Automation, Specification, Documentation
Yusuf Cem Subakan | Language Guru, Project Manager

Dallas Randal Jones | Testing Automation, Specification, Documentation

4.5 Development Environment

The full list of the software we have employed through the development of our
language are as follows:

e Bitbucket Git Repository: We have set up our git environment the day
we formed our group, and have used it constantly.

e OCaml Version 4.02.3: For the main TENLAB compiler that outputs
.c code.

e GCQC: For building the .c output.
e Cygwin64: For the tests on Windows.
e MATLAB Version R2015a: For the testing of the mex interface.

e Microsoft Visual C++4 2013 Professional: For building and testing
the mex interface.

e Latex: We like nice-looking reports.

e Gimp: For the design and creation of the project logo.

Development took place on Windows 10 and Ubuntu, and across a large range
of hardware configurations from AWS g2.8xlarge instances to Surface 3.

4.6 Programming Style Guide

We have generally adhered on the following guidelines during the coding of the
language:

e We have followed the OCaml formatting style, though portions of the code
have some differences that rendered it easier for us to reason about certain
subsets of the code during the coding stage. We have chosen to use two
spaces for indentation.

e We have fully adhered to the 80-column rule throughout the code.

e All parts of the program and the internal functions were named according
to their purpose so that they would be easy to read and understand for a
newcomer.

17

e Underscores were utilized for the naming of the variables.

e For the C backend, we have decided to use descriptive and long names for
the extendability of the language in the future. As the majority of the
length came from the strings and due to time constraints, we have not
adhered to the 80-column rule throughout those files.

4.7 Project Timeline

Date Milestone

February 3rd | Bitbucket Repository Created

February 23rd | First Draft of the Language Reference Manual

March 1st First draft of the scanner and the parser

April 4th Code generation successful

April 6th Various Hello World programs working

May 5th First version of the C backend

May 9th Mex interface complete, first draft of the Final Report
May 11th Project presentation and submission of the Final Report

Project Log is provided after the appendix.

18

5 Architectural Design

5.1 Compiler and Block Diagram:

Compiler Setting (MEX/C)

Scanner Parser

.ten Source File g

Compiled IF Setting = C Code IF Setting = MEX Compiled

Program Generation Program
(.c) (.€)

A A

TENLAB
GCC TE.NLAB ¢ MEX MATLAB
Library .
Library

A 4 A 4

i Binary ; i .mexFile ;

Figure 1: Architecture for the compilation of a TENLAB program, showing the
two different ways in which programs can be built.

The architecture of the TENLAB compiler consists of a scanner, a parser, an
AST module (termed Ccode for convenience), a code generator and a C header
to glue everything together. The scanner and the parser form the front end of
the TENLAB compiler and the code generator forms the back end along with
the C back end. All of these components except the C headers are written in
OCaml.

Entry point to the compiler is the tenlab.ml file, which sequentially calls
the components of the compiler sequentially. Firstly, the input is passed to
scanner.ml which generates tokens. Those are then passed to parser.ml and
an Abstract Syntax Tree is generated using the datatypes defined in ccode.ml.
The Abstract Syntax Tree is then passed to the compile.ml, which performs
most of the C code generation, matching some of the more common structures
with an intermediate format. This format is then processed into a string using a
list of definitions kept in ccode.ml and the compiled C code is outputted. This
code can then be compiled into binary using. Due to the fundamental differences
between TENLAB and C, the C code output also requires a custom-built library
written in C, called tenlab_preamble.c, to work.

Finally, to be fully compatible with MATLAB, a version of the library, called
tenlab_preamble.cpp, is included which has very minor differences. For files

19

compiled using the MEX compilation option, at this time this library is required.

5.2 Scanner:

e Relevant Files: scanner.mll

Written in ocamllex, the scanner takes a TENLAB file as input and tokenizes
that input into literals, identifiers and keywords. Tokens created by the scanner
are passed to the parser.

5.3 Parser:

o Relevant Files: parser.mly, ccode.ml

Written in ocamlyacc, the parser parser.mly gets a series of tokens from the
scanner and then generates an Abstract Syntax Tree (AST) using the grammar
declared in the ccode.ml file.

5.4 Code Generation:

e Relevant Files: compile.ml, ccode.ml

TENLAB compilation continues with a single-pass, depth-first traversal of
the Abstract Syntax Tree generated. Parts of the code for which the corre-
sponding .c code could be generated immediately are converted; to abbreviate
the generated code to expedite programming, some of the code is converted into
an intermediate format. Finally, a second pass is made over the now-linearized
list using a list of definitions that are kept in the ccode.ml file for convenience
to turn the compile.ml output into a string and thus generate the compilable .c
code.

Due to a number of fundamental differences between MEX and regular C,
the compiler also needs to know the type of output that’s going to be generated.
Headers for the two targets as well as the entry functions are different and are
decided upon by looking at the directives given to the compiler.

5.5 C Functions:

o Relevant Files: tenlab_preamble.c, tenlab_preamble mex.cpp

These collections of functions include a number of low level functions that al-
low TENLAB to avoid various memory problems that could come up. Generated
.c code automatically includes the relevant file in the header.

Every component was built and integrated by Mehmet; the initial version of
the tensor product code generation submodule in the was built by Cem and was
later integrated into the language by Mehmet.

20

6 Testing

6.1 From Source to Target

Let us begin with a two-dimensional matrix product:

TENLAB Test File 1: Matrix Product

tensor X;
tensor Y;
tensor 7Z;

X = [[3,4]1,[4,5]1,[6,711;

Yy = [[1,2,3],[4,5,6]1];

z = [[0,0,0],[0,0,0],[0,0,011;

Z = {1} {3,2} X {2} .*x {2,3} Y {1};

print (Z);
and let us give the output:

TENLAB Test File 2: Matrix Product

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include

// Stats: 3 Script Variables;

int main(){

TENLAB_Tensor Z;
TENLAB_Tensor_create (&Z);
TENLAB_Tensor Y;
TENLAB_Tensor_create (&Y);
TENLAB_Tensor X;
TENLAB_Tensor_create (&X) ;
TENLAB_assign (&X,3);
TENLAB_assign (&X,4);
TENLAB_assign (&X,4);
TENLAB_assign (&X,5);
TENLAB_assign (&X,6) ;
TENLAB_assign (&X,7);
TENLAB_add_shape (&X,2);
TENLAB_add_shape (&X,3) ;
TENLAB_assign (&Y, 1);
TENLAB_assign(&Y,2);
TENLAB_assign (&Y,3);
TENLAB_assign(&Y,4);
TENLAB_assign(&Y,5);
TENLAB_assign (&Y,6);
TENLAB_add_shape (&Y,3) ;
TENLAB_add_shape (&Y,2);
TENLAB_assign(&Z,0);
TENLAB_assign (&Z,0);
TENLAB_assign (&Z,0);
TENLAB_assign(&Z,0);

21

TENLAB_assign(&Z,0);

TENLAB_assign(&Z,0);

TENLAB_assign(&Z,0);

TENLAB_assign(&Z,0);

TENLAB_assign(&Z,0);

TENLAB_add_shape (&Z,3) ;

TENLAB_add_shape (&Z,3) ;

for(int TENLAB_il1=0; TENLAB_i1<3; TENLAB_il++) {

for (int TENLAB_j2=0; TENLAB_j2<3; TENLAB_j2++) {

for(int TENLAB_k1=0; TENLAB_k1<2; TENLAB_k1++) {

Z.Content [TENLAB_i1+TENLAB_j2*3] = Z.Content [TENLAB_il+
TENLAB_j2*3] + X.Content [TENLAB_il1+TENLAB_k1%3] * Y.Content
[TENLAB_k1+TENLAB_j2%2];

}

}

}

TENLAB_Tensor_print (Z);

}

Let continue with a simpler GCD Algorithm:
TENLAB Test File 3: GCD

/% Beginning of Function Declarations
function gecd (Z, X, Y);

Z =X 1=1Y;
while (Z);
if (X > Y);
X =X -Y;
else;
Y =Y - X;
end ;
Z =X I=1Y;
end;
return X;
end ;

/4 Beginning of the Script
tensor A;
tensor B;
tensor C;
tensor 7Z;

A = 12;

B = 14,

A gcd(C,A,B);
print (A);

A = 3;

B = 5;

A gcd(C,A,B);
print (A);

and the target output:

22

TENLAB Test File 4: GCD

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include

// Stats: 4 Script Variables;

TENLAB_Tensor gcd(TENLAB_Tensor Z,TENLAB_Tensor X,TENLAB_Tensor
) {

TENLAB_assign(&Z,X.Content [X.cur_content_length-1]!=Y.Content[Y.
cur_content_length-1]1);

while (Z.Content[Z.cur_content_length-1]1>0) {

if (X.Content[X.cur_content_length-1]>Y.Content[Y.
cur_content_length-1]1){

TENLAB_assign(&X,X.Content [X.cur_content_length-1]-Y.Content[Y.
cur_content_length-1]);

}

else

{

TENLAB_assign(&Y,Y.Content[Y.cur_content_length-1]-X.Content [X.
cur_content_length-1]);

}

TENLAB_assign(&Z,X.Content [X.cur_content_length-1]!=Y.Content[Y.
cur_content_length-1]);

}

return X;

}

int main(){

TENLAB_Tensor Z;

TENLAB_Tensor_create (&Z);

TENLAB_Tensor C;

TENLAB_Tensor_create (&C) ;

TENLAB_Tensor B;

TENLAB_Tensor_create (&B) ;

TENLAB_Tensor A;

TENLAB_Tensor_create (&A);

TENLAB_assign (&A,12) ;

TENLAB_assign (&B,14);

TENLAB_assign(&A,gcd(C,A,B));

TENLAB_Tensor_print (A);

TENLAB_assign (&A,3);

TENLAB_assign (&B,5);

TENLAB_assign (&A,gcd(C,A,B));

TENLAB_Tensor_print (A);

}

6.2 Test Suites and Automation

The testing of TENLAB programs was automated using a modified version of
the MICROC compiler’s bash test script provided by Professor Edwards. This
modified testing suite, now termed testlab, was among the first pieces of code
written for the compiler. Throughout the development of the language, we have
first generated a number of test cases that the language should compile and what

23

the language, and then worked on towards making those programs work.

At first, the testing suite only allowed the checking of pass cases; modifica-
tions to allow the testing of the fail cases were done shortly afterwards during
the development. As the language began to mature and depend heavily on the
usability of the custom C library that allows the language to operate, a sepa-
rate test suite with the same capabilities was eventually developed as well, now
termed testc.

The current statistics for the testing files is as follows: There are 18 test cases
for testc and 35 for testlab. The source package also includes 4 low level unit
tests to show how TENLAB handles of the built-in input and output functions.

In addition to these automated testing solutions, there were some basic unit
testing suites for the tensor parsing and tensor product part of the language that
were written during development. Tensor matching was successfully integrated
into the language in a straightforward manner. The tensor product suite that was
in our initial specification depended on information that would not be available
to the compiler unless the language was severely constrained; even though the
relevant team member responsible was uninterested in working on the project,
the model was integrated to meet the specifications with some sacrifices and the
relevant team member was valuable in this endeavour. As those tests are no
longer needed, they are not provided.

Handling the garbage collection issues became a colossal priority around the
end of the project, which required a significant portion of the language to be
changed and required the introduction of Struct’s to keep track of everything
internally; before that, the language had relied on the use of two dynamic arrays
per tensor to keep track of everything at a lower level. It was thanks to our
automation system that we were able to address some potentially catastrophic
memory issues.

Source files for the testing scripts are included in the Appendix. All of the
testing was done by Mehmet.

24

7 Lessons Learned & Advice

7.1 Mehmet Turkcan:

7.1.1 Lessons Learned:

Whereas I had worked in projects in which the addition of a small feature could
break significant sections of the program before, I had never taken part in a
project like this in which every single section of the code should be kept in mind
during the programming process. Building an automated test suite very early
on and writing up a list of test cases beforehand was definitely the best choice
we made in regards to the handling of the project. Certainly, the course has
changed my mind on the importance of testing.

Lastly, I must say that OCaml is actually really fun to work with; however,
it did take me some time to truly understand the language and its capabilities.

7.1.2 Advice:

It is important to make sure that the team members are comfortable with the
tools and the programming languages that are going to be used during the project
and to determine the strengths and the weaknesses of the team members well
before the submission of the initial proposal.

Secondly, versatility of the team members is of immense importance. Specif-
ically, it is crucial that all group members are able to learn and get comfortable
with OCaml as well as the various other languages and tools that are to be used
during the development very early on. Every member of the team should be
aware of the details of the implementation and the restrictions imposed by the
architecture at all times and be capable of handling their responsibilities, espe-
cially as the term continues and people begin to encounter subtle roadblocks,
which have the potential to bottleneck the progress of the whole project.

My final advice to future groups is to be very selective during the teaming up
process and to prefer people you already know and have worked with together in
the past: people change with time, can have stressful periods in their lives and
even those with otherwise impressive achievements may lack the versatility the
project demands.

25

8

=W N

— = =
= W= O O oo ot

ot

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40

16

18
19
50

51

Appendix

TENLAB Source File 1: scanner.mll

{ open Parser }

“if" { IF }
"function" { FUNCTION }
"end" { END }
"else" { ELSE }
"for" { FOR }
"while" { WHILE }
"return" { RETURN 1}
"tensor" { TENSORDEF }
"clear" { CLEAR }
"clean" { CLEAN }
'[rCf'or=r9r v, [] tat=tzt tAY-'Z']|
ccecrror =91+ 1o =9Iy | (CL'o'='9'1*[".'1['0'-'9"']1+))
(['e* '"E'J['=-* "+']2['0'-'9']1H)?)I(['0'-'9"'"]+(['e" 'E']
['=' '+'172['0'-'9']1+))))+']1'+ as 1lxm { TENSOR(1lxm) }
| ['0'-'9']+ as 1xm { LITERAL(lxm) }
| CCCCfror=r9"J+[*.*JL'0'='9'I*x)|(L'0"'='"9"'"]x['."]J['0'-'9']+))

rule token = parse
["\t'" '\r'" '\m'] { token lexbuf } (*

Whitespace *)

| "%" { comment lexbuf } (* Comments *)

| '(* { LPAREN }

| '>" { RPAREN }

| '[* { LNPAREN }

| 'I' { RNPAREN }

| '{* { LBRACE }

| '}* { RBRACE }

I { coLON }

| ".«" { TENPROD }

| '5* { SEMI }

| '*,* { cOMMA }

|+ { PLUS }

| '-* { MINUS }

R { TIMES }

| */* { DIVIDE }

| '=* { ASSIGN }

| "==" { EQ }

| vi=v { NEQ }

| '« { LT}

| "<=" { LEQ 1}

| ">" { GT }

| ">=" { GEQ }

|

|

|

|

|

|

|

|

|

|

|

(['e" 'E'I['-" '"+']12['0'='9'1+)?)|(C['0'-'9']+(['e" 'E']
['-' '+'1?2['0'-'9']1+))) as 1lxm { LITERAL(lxm) }
| [a'-'z' "A'-'Z']['a'-'z" 'A'-'Z' '0'-'9' '_'Jx as 1lxm { ID(
lxm) }
| eof { EOF }
| _ as char { raise (Failure("illegal character " ~ Char.

escaped char)) }

and comment = parse
['\r' '\n'] { token lexbuf }
| _ { comment lexbuf }

26

N =

= W

ot

O © 00 O T W -

Y O i W N

=~

-~

W N =

~

Lo W W W W WWWWWhN NDNDNDDDDNDNDNDND N
o~ O Ot oC

TENLAB Source File 2: parser.mly

%{ open Ccode %}

%token SEMI LPAREN RPAREN LNPAREN RNPAREN LBRACE RBRACE COMMA
COLON TENPROD

%token PLUS MINUS TIMES DIVIDE ASSIGN

%token EQ NEQ LT LEQ GT GEQ

%token RETURN IF ELSE FOR WHILE TENSORDEF CLEAR CLEAN FUNCTION
END

%token <string> LITERAL

%token <string> ID

%token <string> TENSOR

%token EOF

%nonassoc NOELSE
%nonassoc ELSE
%right ASSIGN

%left EQ NEQ

%left LT GT LEQ GEQ
%left PLUS MINUS
%left TIMES DIVIDE

%start program
%type <Ccode.program> program

hh

program:
decls EOF { $1}
| decls main_decl { fst $1, ($2 :: snd $1) }
decls:
/* nothing */ { [1, [1 }
| decls vdecl { ($2 :: fst $1), snd $1 }
| decls fdecl { fst $1, ($2 :: snd $1) }

main_decl:
stmt_list
{ { fname = "main";
formals = [];
locals = [];
body = List.rev $1 } }

fdecl:
FUNCTION ID LPAREN formals_opt RPAREN SEMI vdecl_list
stmt_list END SEMI
{ { fname = $2;
formals = $4;
locals = List.rev $7;
body = List.rev $8 } }

formals_opt:
/* nothing */ { []1 }
| formal_list { List.rev $1 }

formal_1list:

27

N S O
WM = O O

~N 1]
Tt = C

-~

79
80
81
82
83

85

1D { [$11 }
| formal_list COMMA ID { $3 :: $1 }

vdecl_list:

/* nothing */ {0 3z
| vdecl_list vdecl { $2 :: $1 1}
vdecl:

TENSORDEF ID SEMI { $2 }

stmt_list:
/* nothing */ { [1 %
| stmt_list stmt { $2 :: $1 }
stmt :

expr SEMI { Expr($1) }
| RETURN expr SEMI
{ Return($2) }
| CLEAR ID SEMI
{ Clear($2) }
| CLEAN ID SEMI
{ Clean($2) }
| ID ASSIGN LBRACE num_list RBRACE LBRACE num_list RBRACE 1ID
LBRACE num_list RBRACE
TENPROD LBRACE num_list RBRACE ID LBRACE num_1list RBRACE
SEMI
{ BuildTensorProd($1, List.rev $4, List.rev $7, $9,
List.rev $11, List.rev $15, $17, List.rev $19) }
| IF LPAREN expr RPAREN SEMI stmt_list END SEMI %prec NOELSE
{ If($3, Block(List.rev $6), Block([]1)) }
| IF LPAREN expr RPAREN SEMI stmt_list ELSE SEMI stmt_list END
SEMI
{ If($3, Block(List.rev $6), Block(List.rev $9)) }
| FOR ID ASSIGN ID SEMI stmt_list END SEMI
{ For($2, $4, Block(List.rev $6)) 1}
| WHILE LPAREN expr RPAREN SEMI stmt_list END SEMI
{ While($3, Block(List.rev $6)) }

expr:
LITERAL { Literal($1) }
| ID { Ia(s$1) %
| TENSOR { TensorGet($1)
| expr PLUS expr { Binop($1, Add, $3) }
| expr MINUS expr { Binop($1, Sub, $3) 1}
| expr TIMES expr { Binop($1, Mult, $3) }
| expr DIVIDE expr { Binop($1, Div, $3) }
| expr EQ expr { Binop($1, Equal, $3) }
| expr NEQ expr { Binop($1, Negq, $3) }
| expr LT expr { Binop($1, Less, $3) }
| expr LEQ expr { Binop($1, Legq, $3) 1}
| expr GT expr { Binop($1, Greater, $3) }
| expr GEQ expr { Binop($1, Gegq, $3) }
| ID ASSIGN expr { Assign($1, $3) 2
| ID LPAREN actuals_opt RPAREN { Call($1, $3) }
| LPAREN expr RPAREN { $2 1}
actuals_opt:
/* nothing */ {003

| actuals_list { List.rev $1 }

28

111
112
113
114
115
116
117
118

actuals_list:
expr
| actuals_list COMMA expr

num_list:
LITERAL
| num_list COMMA LITERAL

{ [$1]1 }
{ $3 :: $1 }

{ [int_of_string $1]1 }

{ (int_of_string $3)

$1 3

29

=W N =

19

[NI\

Y Ot

O © 00~

DR~

D O

3

R R W W W W W W W W W WNNDNDDNDNDNDDN
N = O O

43

TENLAB Source File 3: ccode.ml

(¥ TENLAB AST Module by Mehmet Kerem Turkcan *)
(* Based on the corresponding MICROC Module *)

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq |
Greater | Geq

type expr =
Literal of string

| Id of string

| TensorGet of string
| Binop of expr * op * expr
| Assign of string * expr
| Call of string * expr list
| GetTensorElement of string * string
| Noexpr

type stmt =
Block of stmt list

| Expr of expr

| BuildTensorProd of string * int list * int list * string *

int list

* int list * string * int list
CreateTensor of string * string
Return of expr
Clear of string
Clean of string
If of expr * stmt * stmt
For of string * string * stmt
While of expr * stmt

type func_decl = {
fname : string;
formals : string list;
locals : string list;
body : stmt list;

type program = string list * func_decl list

let rec string_of_expr = function
Literal(l) -> 1
| Id(s) -> s - ".Content[0O]"
| TensorGet(s) -> s
| Binop(el, o, e2) ->
string_of_expr el
(match o with
Add -> "+" | Sub -> "-" | Mult -> "s" | Div -> "/"
| Equal -> "==" | Neq -> "!I="
| Less -> "<" | Leq -> "<=" | Greater -> ">" | Geq -> ">="
y ~ o=
string_of_expr e2
| Assign(v, e) -> v = " = " ~ string_of_expr e
| Call(f, el) ->
f -~ "(" ° String.concat ", " (List.map string_of_expr el)
~ wyn
| Noexpr -> ""
| _ -> raise (Failure ("TENLAB Error: Something impossible was

30

~

Y O Ot Ot Ot Ot Ot
o~ O Ot

Ne)

o O «
RO

63
64
65
66
67
68
69

U W N = O

=

IR BEN BEN BES BES BEN RS RS BN
0 I :

x

91
92
93
94
95
96
97
98
99
100
101
102

observed."))

type bstmt =
(* Direct Output of Numeric Literal *)
Lit of string
(*¥ Direct Output of String *)
| DirectOut of string
(* Tensor of String *)
| TensorGet of string
(* Tensor Variable of String *)
| TempVar of string
(*¥ Tensor Declaration of String *)
| VarDeclare of string
(*¥ Tensor Operation of Strings *)
| TensorOpt of string * string * string
(* Direct Output of Tensor *)
| TensorAssign of string
(* Free Memory of Temporary Variable *)
| TempMemFree of int
(* Get Size of Temporary Variable *)
| TempGetSize of int
(* Direct Output of String *)
| TensorSub of string
(* Call Function by Ezplicit Name *)
| FunctionCall of string
(*¥ Return Values at the End of Function *)
| ReturnValue of int
(¥ Clear a Tensor *)
| ClearValue of string
(* Clean a Tensor from memory *)
| CleanValue of string
(*¥ Return Values at the End of Function *)
| VarAssign of int
(* Put Right Paranthesis *)

| Parend
(*¥ End of Function *)
| Curlend
(¥ Begin If Statement *)
| Beginf
(¥ Put a Comma *)
| Comma
(* End Line and Begin New Line *)
| Lineend
(¥ Begin Curl for Blocks and Start a New Linex)
| Curlbegin
(* Arithmetic Operations *)
| Bin of op

type prog = {

num_globals : int; (* Number of
global wvariables *)
text : bstmt array; (¥ Code for all
the functions *)
}
(*
Match Implicit Blocks
*)

31

110 |let string_of_stmt = function

111 Lit(i) -> i

112 | DirectOut (i) -> i

113 | TempVar (i) ->

114 "TENLAB_Tensor temp" ~ i ~ ";\nTENLAB_Tensor_create(&" ~ i

T ") s\nt

115 | TensorGet (i) -> i

116 | TempMemFree(i) -> "TENLAB_Tensor_destroy(&temp" ~

117 string_of_int i ~ ")"

118 | TempGetSize (i) -> "temp" ~ string_of_int i ~ ".
cur_content_length"

119 | TensorSub(i) -> i

120 | VarDeclare(i) -> i

121 | TensorAssign(i) -> i =~ " ="

122 | TensorOpt(i,j,k) ->i ~ j ~ k

123 | FunctionCall("input") -> "TENLAB_Tensor_populate_from_MEX(
prhs ,&"

124 | FunctionCall("output") -> "TENLAB_Tensor_to_MEX(plhs,&"

125 | FunctionCall("pop") =-> "TENLAB_pop_element (&"

126 | FunctionCall("dequeue") -> "TENLAB_dequeue_element (&"

127 | FunctionCall("reshape") =-> "TENLAB_Tensor_reshape (&"

128 | FunctionCall("print") =-> "TENLAB_Tensor_print ("

129 | FunctionCall("shape") =-> "TENLAB_ Tensor_shape_print ("

130 | FunctionCall("set") -> "
TENLAB_add_element_at_specific_position(&"

131 | FunctionCall("length") -> "TENLAB_add_length(&"

132 | FunctionCall("main" -> "int main ("

133 | FunctionCall(i) -> i ~ "("

134 | VarAssign(i) -> "double var" ° string_of_imt i ~ " ="

135 | ReturnValue(i) -> "return "

136 | ClearValue (i) ->

137 "TENLAB_Tensor_destroy (&" ~ i ~ ");\nTENLAB_Tensor_create

&" ~ i~ ")

138 | CleanValue(i) -> "TENLAB_Tensor_destroy(&" ~ i ~ ");"

139 | Bin (Add) => "4n

140 | Bin (Sub) -> "

141 | Bin(Mult) => "x"

142 | Bin(Div) -> "/"

143 | Bin(Equal) -> "=="

144 | Bin(Neq) =-> "!="

145 | Bin(Less) -> "<"

146 | Bin(Leq) =-> "<="

147 | Bin(Greater) -> ">"

148 | Bin(Geq) =-> ">="

149 | Parend -> ")"

150 | Curlend -> "}\n"

151 | Beginf -> "if ("

152 | Comma -> ","

153 | Lineend -> ";\n"

154 | Curlbegin -> "{\n"

155

156 |let string_of_vdecl id = "int " ~ id ~ ";\n"

157

158 | (*

159 |Generate Program Text

160 |*)

161

162 | (*

163 |TENLAB Preamble:

32

164

165
166
167

168

169
170
171
172
173
174
175
176
177
178
179
180

181
182
183

184
185
186
187
188
189

Populate for the Language Dependencies wvtia C Libraries and the
TENLAB C Backend
*)
let string_of_prog p =
"#include <stdio.h>\n#include <math.h>\n#include <stdlib.h>\n"

"#include \"tenlab_preamble.c\"\n// Stats: " ~ string_of_int p
.num_globals ~

" Script Variables;\n\n"

let funca = Array.mapi
(fun i s -> "" ~ string_of_stmt s) p.text

in String.concat "" (Array.to_list funca)

(*
Generate Program Text for MEX-Supported Programs
*)

(*

TENLAB Preamble:

Populate for the Language Dependencies wvia C Libraries and the

TENLAB C Backend

*)

let string_of_prog_mex p =

"#include <stdio.h>\n#include <math.h>\n#include <stdlib.h>\n#
include <mex.h>\n"

"#include \"tenlab_preamble_mex.cpp\"\n// Stats: "

string_of_int p.num_globals
" Script Variables;\n\n"

let funca = Array.mapi
(fun i s -> "" ~ string_of_stmt s) p.text
in String.concat "" (Array.to_list funca)

33

19

W =

DN DN DN N DN
Y O

[\
N o

N DN
oo

16

TENLAB Source File 4: compile.ml

(¥ TENLAB COMPILATION Module by Mehmet Kerem Turkcan and Yusuf
Cem Subakan *)
(*# Based on the corresponding MICROC Module
*)

open Ccode
open Str

module StringMap = Map.Make(String)
(*
Thts converts the dimension matching list into a binary list
*)
let rec 1list2bin 1st dims cnt =
match 1lst,dims with
[00,00 -> [1
[_,00 -> (1
| [D,hd::t12 -> 0::(list2bin [] t12 (cnt+1))
| hd::t1,hd2::t12 -> if (cnt=hd) then 1::(list2bin t1 t1l2 (
cnt+1))
else 0::(1list2bin 1lst t1l2 (cnt+1));;
(*
This function fills the unmatched indices of a temnsor in a list
*)
let rec binary2inds match_dims len charac =
match match_dims with
[01 -> 11
| hd::tl -> if (hd=0) then (charac”(string_of_int (len -
(List.length t1))))::(binary2inds tl len charac)
else binary2inds tl len charac;;
(*
This function eztracts the dimension limits for specified limits
in the binary
list binsd / one_or_zero input specifies whether matched/non-
matched indices
should be picked
*)
let rec binary2lims binsA dims one_or_zero =
match binsA,dims with

[00,00 -> 11
-, 00 -> 11
[0, -> 1
I

hd::tl,hd2::t12 -> if (hd=one_or_zero) then
hd2::(binary2lims tl tl2 one_or_zero)
else binary2lims tl tl2 one_or_zero;;
(*
This functions writes the for loops, for the observable indices
of a tensor in a list
*)
let rec writefors inds dims =
match inds,dims with
| 01,00 -> 11
| hd::t1,[1 -> []
| [1,hd2::t12 -> []
| hd::t1,hd2::t12 -> ("for(int "~hd~"=0;""hd~"<""(
string_of_int hd2)"~
"' hd""++) { \n ")::(writefors tl tl12);;
(*

34

N —

Y U i W

P

J

Yy O O Ot Ot Ot Ot O Ot Ot
oo :

66

68
69
70

89

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

This produces a list of length len comsisting of all n's
*)
let rec all_n_list n len cnt =
if (cnt<=len) then n::(all_n_list n len (cnt+1))
else [1;;
(*
This function 4s mneeded for linear indezxzing
*)
let rec multiply_lims lims ind cnt =
match lims with
| 11 =>
| hd::tl -> if (cnt<ind-1) then (string_of_int hd) ~ "x" ~
(multiply_lims tl ind (cnt+1))
else if (cnt = ind-1) then string_of_int hd
else "";;
(*
This function writes the linear indices given the index and
dimensions list
*)
let rec linear_indices inds lims len cnt=
match inds with
|1 ->
| hd::t1 -> if (cnt = 1 && len > 1) then hd =~ "+" ~
(linear_indices tl1 lims len (cnt+1))
else if (cnt = 1 && len = 1) then hd
else if (cnt > 1 && cnt<len && len>1) then
hd~"*"“(multiply_lims lims cnt 1) ~ "+" ~
(linear_indices tl 1lims len (cnt+1))
else hd™"*""(multiply_lims lims cnt 1)
(linear_indices tl lims len (cnt+1));;

(*
This function mnegates a binary list
*)
let rec negate_list 1lst =
match 1st with
[0 -> 1]
| hd::tl -> (1-hd)::(negate_list tl);;

(*
This function forms the indices/limits given the binary matching
list binsd,
observable indices obsinds and matched indices matchedinds
*)
let rec form_indsA binsA obsinds matchedinds cntl cnt2 =
match binsA with
| [0 -> 11
| hd::t1l -> if (hd=0) then (List.nth obsinds cntl)::
(form_indsA tl obsinds matchedinds (cnti1+1) cnt2)
else (List.nth matchedinds cnt2)::
(form_indsA tl obsinds matchedinds cntl (cnt2+1));;
(*
This function finds the index of the element z in list lst -
the index starts from 1
*)
let find_index 1lst x =
let rec find_x_index 1lst x cnt =
match 1lst with
[0 -> -1

35

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

131

136
137
138
139
140

| hd::t1 -> if (hd=x) then cnt
else find_x_index tl1l x (cnt+1)
in find_x_index 1lst x 0;;
(*
This function forms the indices of B
*)
let rec form_indsB binsB obsinds matchedinds matchB =
let rec form binsB obsinds matchedinds matchB cntl cnt2 =
match binsB with
| [0 -> 1[I
| hd::t1l -> if (hd=0) then
(List.nth obsinds cntl) ::
(form tl obsinds matchedinds matchB (cnti1+1) (cnt2+1))
else (List.nth matchedinds (find_index matchB cnt2))::
(form tl obsinds matchedinds matchB cntl (cnt2+1))
in form binsB obsinds matchedinds matchB 0 1;;

let rec concat_strings_inlist 1lst =
match 1lst with
| [] > nn
| hd::tl -> hd"(concat_strings_inlist tl);;

(*

Write the 'obserwvable' for loops for tensor A in a list called
fors4

*)

let create_tensor_product_code c¢ sum_or_diag dimsA a matchA
dimsB b matchB =
let binsA = list2bin matchA dimsA 1 in
let indsA = binary2inds binsA (List.length binsA) "TENLAB_i"
in
let limsA = binary2lims binsA dimsA O in
let forsA = writefors indsA limsA in

(*
Write the 'obserwable' for loops for temsor B ins a list
called forsB

*)
let binsB = list2bin (List.sort compare matchB) dimsB 1 in
let indsB = binary2inds binsB (List.length binsB) "TENLAB_j"
in
let limsB = binary2lims binsB dimsB 0 in
let forsB = writefors indsB limsB in
(*
Write the 'matched' for loops
*)
let inds_matched_all = binary2inds
(*
Get 1inds
*)

(all_n_1list O (List.length sum_or_diag) 1) (List.length
sum_or_diag)
"TENLAB_k" in
let inds_matched_observable =
binary2inds sum_or_diag (List.length sum_or_diag) "TENLAB_k"
in
let inds_matched_collapsed =
binary2inds (negate_list sum_or_diag) (List.length

36

160
161
162
163
164

sum_or_diag) "TENLAB_k" in

(*

Get the limits

*)

let lims_matched_all = binary2lims binsA dimsA 1 in

let lims_matched_observable = binary2lims sum_or_diag
lims_matched_all 0 in

let lims_matched_collapsed = binary2lims sum_or_diag
lims_matched_all 1 in

(*

Write for's

*)

let fors_matched_observable =

writefors inds_matched_observable lims_matched_observable in
let fors_matched_collapsed =

writefors inds_matched_collapsed lims_matched_collapsed in
(*

Concatanete to get all fors

*)

let all_fors = forsA @ forsB @ fors_matched_observable @
fors_matched_collapsed in

(*

get the indices and limit of the term C by concatenating
observable indices/limits

*)

let all_inds_C indsA @ (indsB @ inds_matched_observable) in
let all_lims_C = limsA @ (limsB @ lims_matched_observable) in

(*

write down the limear tndices for C

*)

let term_C = linear_indices all_inds_C all_lims_C
(List.length all_inds_C) 1 in

(*

Get all indices for A4

*)

let all_inds_A = form_indsA binsA indsA inds_matched_all 0 O

in
(*

Write down what we have for A in linear indices

*)

let term_A = linear_indices all_inds_A dimsA (List.length
all_inds_A) 1 in

let all_inds_B = form_indsB binsB indsB inds_matched_all
matchB in

(*

Write down what we have for B in linear indices

*)

let term_B = linear_indices all_inds_B dimsB (List.length
all_inds_B) 1 in
(*
Aggregate the terms instde fors
*)
let theterm_inside_fors = c~".Content["“term_C~"] = " =
c - ".Content[" = term_C ~ "] + " =~ a =~ " _ Content[" ~ term_A
A
b ~ ".Content[" ~ term_B ~ "]; \n" in
(*

Form the closing brackets

37

211
212

246
247
248
249
250

CECES
[\]

Y O R W

N DN
(@)

Ot Ot Ot Ot Ot Ot

b

-~

*)
let closing_brackets = all_n_list "} \n " ((List.length
all_fors)-1) 0 in

(*

Put everything instde a big string - the output dimensions are
in all_lims_C

*)

let everything =
(concat_strings_inlist all_fors) theterm_inside_fors
(concat_strings_inlist closing_brackets) in everything;;

let str_crop_last_char x_in =
if x_in = "" then "" else
String.sub x_in 0 ((String.length x_in) - 1)

let get_string_length x_in = string_of_int (((String.length x_in
)-1)/2)

let get_tensor_dimension e =
let temp = List.filter (fun x -> (String.length x)>0) (List.
map (function

| Str.Delim s -> s
| _ => "") e) in

let mapper x_in= ((String.length x_in)-1)/2 in

let temp2 = List.sort_uniq (fun x y -> if x > y then 1 else 0)
(List.map (mapper) temp) in

temp2;;

let get_tensor_blocks x_in =
Str.full_split (Str.regexp "\\[\\CL[O-91+["','I\\)+[0-91+\\1")

X_in;;

let rec build_tensor e =
if (List.length e) > 1 then
let temp = (List.map (function
| Str.Delim s -> (get_string_length s)
| Str.Text s -> s) e) in
let templ = build_tensor (get_tensor_blocks (String.concat ""

temp)) in
let temp2 = get_tensor_dimension e in
temp2::templ else

(1;;
let get_tensor_elements x_in =

List.map int_of_string (Str.split (Str.regexp "["0-9]+") x_in)

3

let declare_tensor_in_C name_in content_in=

let templ = (List.concat (build_tensor
(get_tensor_blocks ("[" ~ content_in ~ "]")))) in
let temp3 = List.fold_left (fun x1 x2 -> x1 ~ x2 ~ ");\
nTENLAB_assign(&" ~
name_in ~ ",") ("TENLAB_assign(&" ~ name_in ~ ",")

((Str.split (Str.regexp "["0-9]+") content_in)) in
let temp4 = String.sub temp3 0
((String.length temp3)-17-(String.length name_in)) in

38

262

263
264
265
266
267
268

269
270
271
272
273

NN DN
=~ ~J 1 ~J
~J O Ut W~

N DN
oo

279
280
281
282
283

284
286
287

288
289

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

307
308
309
310

let temp5 = List.fold_left (fun x1 x2 -> x1 ~ (string_of_int

x2) °
") ;\nTENLAB_add_shape (&" ~ name_in ~ ",")
("\nTENLAB_add_shape (&" ~ name_in ~ ",") templ in

let temp6 = String.sub tempb5 0

((String.length temp5)-19-(String.length name_in)) in
"TENLAB_Tensor " ~ mname_in ~
";\nTENLAB_Tensor_create(&" ~ name_in ~ ");\n" ~ temp4 ~ tempb

3

let declare_tensor_in_C_without_first_line name_in content_in=
let templ = (List.concat (build_tensor
(get_tensor_blocks ("[" ~ content_in ~ "]")))) in
let temp3 = List.fold_left (fun x1 x2 -> x1 =~ x2 ~ ");\
nTENLAB_assign(&" ~
name_in ~ ",") ("TENLAB_assign(&" ~ name_in ~ ",")
((Str.split (Str.regexp "["0-9]+") content_in)) in
let temp4 = String.sub temp3 O
((String.length temp3)-17-(String.length name_in)) in
let tempb = List.fold_left (fun x1 x2 -> x1 ~ (string_of_int

x2) -~
") ;\nTENLAB_add_shape (&" ~ name_in ~ ",")
("\nTENLAB_add_shape (&" ~ name_in ~ ",") templ in

let temp6 = String.sub temp5 O
((String.length temp5)-19-(String.length name_in)) in
[DirectOut ((*"TENLAB_Tensor_create(&" ~ mame_in ~ ");\n" ~x%)
temp4d ~ temp6)];;

(*
"double *" ~ name_in ~ ";\n" " name_in ~ " =
(double[" = string_of_int temp2 ~ "]) {" ~ temp4 ~ "};\nint x*
TENLAB_" ~
name_in ~"_size;\nTENLAB_" ~ name_in ~ "_size =
(int[" ~ string_of_int (List.length templ) ~ "1) {" ~ tempé6
“};\n"
*)

(¥ Temporary Statement Constructors: x*)

(*¥let declare_tensor_in_C name_in content_in =

let templ = (List.concat (build_tensor (get_tensor_blocks

("[" = comntent_in ~ "1")))) in
let temp2 = (List.fold_left (fun =zl z2 -> z1 * z2) 1 templ) in
let temp3 = List.fold_left (fun z1 22 -> i -~ "," =~ g2) ""

((Str.split (Str.regexp "["0-9]+") content_in)) in
let temp4 = String.sub temp3 1 ((String.length temp3) -1) in
let temp5 = List.fold_left (fun =1 z2 -> z1 ~ " "

(string_of_4int z2)) "" templ in
let temp6 = String.sub temp5 1 ((String.length tempb5)-1) in
"double *" ~ mame_4n ~ ";\n" " mname_in ~ " =
(double[" ~ string_of_int temp2 ~ "1) {" ~ temp4 ~ "};\nint *
TENLAB_" ~
name_in ~"_size;\nTENLAB_" ~ name_in ~ "_size = (int[" ~
string_of_int
(List.length temp1) ~ "1) {" ~ temp6 ~ "};\n";;*)

(* Deprecated: Memory Management via Compound Literals: For
Future Use *)

39

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

L

W w
N DO
= O © N o

H—v\lv\lvé\,&__&‘vé_v\iugvév\il\.il\.')
O © 00~ O T Wi

G INCINJURNJURIJURGU R JU RN JURN JURIJURI UL S OU RN JURI U

(*
let declare_tensor_in_C mame_in content_in =
let templ = (List.concat (butld_tensor
(get_tensor_blocks ("[" ~ content_in ~ "]1")))) in
let temp2 = (List.fold_left (fun z1 z2 -> z1 * z2) 1 templ) in
let temp3 = List.fold_left (fun =1 z2 -> z1 -~ "," ~ z2) ""
((Str.split (Str.regexp "["0-9]1+") content_in)) in
let temp4 = String.sub temp3 1 ((String.length temp3)-1) in
let tempb = List. fold_left

(fun z1 2 -> z1 -~ "," °~ (string_of_int x2)) "" templ in
let temp6 = String.sub temp5 1 ((String.length temp5)-1) in
"double *" ~ mame_in ~ ";\n" "~ name_in °

" = (double[" ~ string_of_int temp2 ~

"1) {" ~ temp4 ~ "};\nint *TENLAB_" ~ name_in ~"_size;\

nTENLAB_" -~

name_in ~ "_size = (int[" ~

string_of_int (List.length templ) ~ "1) {" ~ temp6 ~ "};\n"

)

let declare_tensor_in_C_without_first_line mname_in content_in =

let templ = (List.concat (butld_tensor

(get_tensor_blocks ("[" ~ content_in ~ "1")))) in
let temp2 = (List.fold_left (fun =zl z2 -> z1 * z2) 1 templ) in
let temp3 = List.fold_left (fun =1 2 -> z1 =~ "," ~ z2) ""

((Str.split (Str.regexp "["0-9]1+") content_in)) in
let temp4 = String.sub temp3 1 ((String.length temp3)-1) in
let tempb5 = List.fold_left (fun z1 z2 -> 21 ~ "," ~

(string_of_int x2)) "" templ in
let temp6 = String.sub temp5 1 ((String.length temp5)-1) in
let output_string = mname_in ~ " = (double[" ~

string_of_int temp2 ~ "1) {" ~ temp4 ~ "};\nTENLAB_" ~
name_1in "_size = (int[" string_of_int (List.length templ
) -
"1) {" ~ temp6 ~ "};\n" in
[DirectOut output_stringl;;

*)
let declare_for_loop_in_C name_a_in name_b_in =
"int TENLAB_for_" ~ name_a_in ~ ";\nfor (TENLAB_for_" -~
name_a_in °~
"=1;, TENLAB_for_" ~ name_a_in =~ "<=" " name_b_in ~
".cur_content_length; TENLAB_for_" ~ name_a_in ~ "++){\n";;

let declare_arbitrary_for_loop_in_C name_a_in name_b_in =

[DirectOut ("int TENLAB_for_" ~ name_a_in ~ ";\nfor(
TENLAB_for_" ~

name_a_in ~ "=1;TENLAB_for_"" name_a_in ~"<=")] @ name_b_in @

[DirectOut (";TENLAB_for_" ~ name_a_in =~ "++){\n")1;;

let list_dot_product = List.fold_left2 (fun s x y -> s + x * y)
033

(#¥let tensor_operation_abstract el e2 op_type = [TensorOpt [el,
e2,op_typell;;*)

let tensor_operation_constructor el e2 e3 op_type=
[DirectOut (declare_tensor_in_C "TENLAB_temp_sum_a" e2)] @

40

363
364
365

366
367

[DirectOut (declare_tensor_in_C "TENLAB_temp_sum_b" e3)] @

[DirectOut ("double *" =~ el =~ ";")] @

[DirectOut (declare_for_loop_in_C"TENLAB_inner" Ll
TENLAB_temp_sum_a")] @

[DirectOut ("x" ~ el ~

"[TENLAB_for _TENLAB_inner] = TENLAB_temp_sum_al[
TENLAB_for_TENLAB_inner] " ~

op_type ~ " TENLAB_temp_sum_b[TENLAB_for_TENLAB_inner];")] @ [
Curlend];;

(* let get_single_element_from_tensor_in_C mname_a_in name_b_in =

let templ = get_tensor_elements name_b_in in
let temp2 = in
"double " ~ mame_a_in ~ ";\n" " name_a_in ~ "=" ~ *)

(*¥ For Debugging:
get_tensor_elements "[[[5,4,3,7],[1,2,3,4]111";;
get_tensor_blocks "[[[5,4,3,7]1,[1,2,3,4111";;
let result = build_tensor (get_tensor_blocks "
[(rrs,4,3,71,01,2,3,4111") in
(List.concat result);;

*)

(*
Alternate Parser Module:
tensor_lists:

tensor_list { $1 }
| tensor_lists COMMA tensor_list { (($1)) ~ "," ~ (($3)) }
| LNPAREN temnsor_lists RNPAREN { "[" =~ (($2)) o) S

tensor_list:
LNPAREN tensor_element_list RNPAREN { "[" ~ (String.concat ""
(¢2)) =~ "1" }

tensor_element_list:

LITERAL { [(string_of_int $1)] }
tensor_element_list COMMA LITERAL
{ List.rev ((string_of_+int $3) :: ("," :: $1)) }
*)
(*

Symbol table: Information about all the mames in scope
*)
type env = {

function_index : int StringMap.t;
global_index : int StringMap.t;
local_index : int StringMap.t;
}
let rec enum stride n = function
1 -> 11
| hd::t1l -> (n, hd) :: enum stride (n+stride) tl

let string_map_pairs map pairs =
List.fold_left (fun m (i, n) -> StringMap.add n i m) map pairs

(*
41

137
438
139
140
441
142
143
444
145
146
447
148
149
450

151

W~
Tt
W

NN
S Ut

ot Ot Ot Ot

i

Translate a program in AST form into a C program in blocks.
Throw an exception

if something is wrong, e.g., a reference to an unknown variable
or function

*)

let translate (globals, functions) main_type=

(¥ Allocate "addresses" for each global wariable *)
let global_indexes = string_map_pairs StringMap.empty (enum 1
0 globals) in

(*

Assign indexes to spectal function names; butlt-in "print" 4s
special

*)

let built_in_functions = StringMap.add "print" (-1) StringMap.
empty in

let built_in_functions = StringMap.add "input" (-2)
built_in_functions in

let built_in_functions = StringMap.add "output" (-3)
built_in_functions in

let built_in_functions = StringMap.add "pop" (-4)
built_in_functions in

let built_in_functions = StringMap.add "dequeue" (-5)
built_in_functions in

let built_in_functions = StringMap.add "reshape" (-6)
built_in_functions in

let built_in_functions = StringMap.add "shape" (-7)
built_in_functions in

let built_in_functions = StringMap.add "set" (-8)
built_in_functions in

let built_in_functions = StringMap.add "length" (-9)
built_in_functions in

let function_indexes = string_map_pairs built_in_functions

(enum 1 1 (List.map (fun f -> f.fname) functions)) in

(*
Translate into C, keeping track of the edge cases
*)

let translate env fdecl =

(*
Bookkeeping: Get number of 4nputs
*)
let num_formals = List.length fdecl.formals
and local_offsets = enum 1 1 fdecl.locals
and formal_offsets = enum (-1) (-2) fdecl.formals in
let env = { env with local_index = string_map_pairs
StringMap.empty (local_offsets @ formal_offsets) }
in
(*

Reorder the Assignment Exzpressions in Intermediate
Representation wvia

Temporary Vartables and Generate the C Code

*)

let expr_to_tensor_op(listin)=

let rec env_build(listin, temporary_declarations,
construction,

finaldeclaration, tempmemorycollector ,declarationtype,
declarationsize ,memoryimprint ,varname)=

42

160
461
162
163
464
165
166
467
168
169
470
171
{72
473
174
{75
476

177

478
179
180
481
182
183

match listin with
| [1 -> if declarationtype = 1 then
(List.rev temporary_declarations) @
(memoryimprint) @
(List.rev tempmemorycollector) else
(List.rev temporary_declarations) @
[DirectOut "TENLAB_assign(&"] @
(List.rev finaldeclaration) @ [DirectOut ","] @
(List.rev construction) @ [DirectOut ")"] @
(List.rev tempmemorycollector)
| head::tail ->
match (head) with
TensorOpt (el,e2,op_type) -> env_build(tail,
(tensor_operation_constructor el e2
(string_of_int (List.length tail)) op_type) @
temporary_declarations,
construction,
finaldeclaration, tempmemorycollector ,1,[DirectOut (el)
5
memoryimprint ,varname)
| TensorSub (el) -> env_build(tail,
temporary_declarations,
construction,finaldeclaration,
tempmemorycollector ,1, [TempGetSize (List.length tail)],
(declare_tensor_in_C_without_first_line (varname) el),
varname)
| VarDeclare (el) ->
env_build (tail,
temporary_declarations, construction,
[DirectOut (el)] @
finaldeclaration, tempmemorycollector ,declarationtype
declarationsize ,memoryimprint ,el)
| _ -> env_build(tail,temporary_declarations , [head] @
construction,finaldeclaration,tempmemorycollector,
declarationtype ,declarationsize ,memoryimprint ,varname)
in env_build(listin, [1, [, [1,[], O,
[DirectOut " (int [1]1){1};\n"1,[]1,"")
(*
Match the exzpressions that don't require temporary variable
assignments in order to work
*)
in let rec expr = function
Literal i -> [Lit il
| GetTensorElement (i,j) -> [DirectOut il
| Id s ->
(try [DirectOut (List.find (fun x -> x = s) (fdecl.locals))]
with Not_found ->
(try [DirectOut (List.find (fun x -> x
.formals)]
with Not_found ->
(try [DirectOut (List.find (fun x -> x = s)
globals)]
with Not_found ->
raise (Failure ("TENLAB Error: Undeclared tensor
" s)))))
| TensorGet (x) -> [TemsorSub (x)]
| Binop (el, op, e2) -> (match el, e2 with
| TensorGet x,TensorGet y -> [TensorOpt (x,y,

43

s) fdecl

513
514
515
516
517

518
519

535
536
537
538
539
540
541
542

543
544

ot
ot

546
547
548
549

ot ot
ot Gt

—_

string_of_stmt (Bin op))]
Literal x,Literal y -> [Lit x] @ [Bin op] @ [Lit yl]
Id x,Literal y -> [DirectOut (x -~ ".Content[" = x ~
".cur_content_length-1]")] @ [Bin op] @ [Lit yl
Literal x,Id y -> [Lit x] @ [Bin op] @ [DirectOut y] @
(try [DirectOut (".Content[" =~ (List.find (fun d -> d
= y) fdecl.formals)”™ ".cur_content_length-1]1")]
with Not_found ->
(try [DirectOut (".Content[" ~ (List.find (fun d
->d = y) globals)” ".cur_content_length-1]1")
]
with Not_found ->
raise (Failure ("TENLAB Error: Undeclared tensor "
T y)dd)
(¥[DirectOut (y ~ ".Content[" ~ y ~ ".
cur_content_length-11")Jx*)
Id x,Id y -> [DirectOut x] @

(try [DirectOut (".Content[" ~ (List.find (fun d -> d
= x) fdecl.formals)”™ ".cur_content_length-1]1")]
with Not_found ->
(try [DirectOut (".Content[" ~ (List.find (fun d
->d = x) globals)” ".cur_content_length-1]1")
]

with Not_found ->
raise (Failure ("TENLAB Error: Undeclared tensor "

T x)))) e
[Bin op] @ [DirectOut y] @
(try [DirectOut (".Content[" =~ (List.find (fun d -> d

= y) fdecl.formals)” ".cur_content_length-1]1")]
with Not_found ->
(try [DirectOut (".Content[" ~ (List.find (fun d
->d = y) globals)” ".cur_content_length-1]1")
]
with Not_found ->
raise (Failure ("TENLAB Error: Undeclared tensor "
Ty
_, _ > (expr el) @ [Bin op] @ (expr e2))
Assign (s, e) ->
(try (*¥let mini_env = [] in *)
let expr_list = expr_to_tensor_op ([VarDeclare s] @ (
expr e)) in
(#¥[DirectOut ((List.find (fun = -> z = s) (fdecl.formals
)) °
"= ")J*) (expr_list)
with Not_found ->
try [VarAssign (StringMap.find s env.global_index)
] @ expr e
with Not_found ->
raise (Failure ("TENLAB Error: Undefined tensor "

" 8)))

Call ("print", actuals) -> if (List.length actuals) = 1

then

[(FunctionCall ("print"))] @

(List.concat (List.map expr (List.rev actuals))) @
[Parend] (* @ [DirectOut "printf (\"\\n\")"J*) else

raise (Failure ("TENLAB Error: function print demands a

single input."))

Call ("input", actuals) -> if main_type=0 then
raise (Failure ("TENLAB Error: Inputs are only possible in

44

v Or Ot Ot
ot Ot Ot Ot

(&1 TN

ot ot Ut
ot Ot Ot
N

~J =1
D O

Ut Ut Ut Ot

~J

ot ot
~
©

580

581
582
583

584
585

586
587
588

589

590
591

592
593

MEX mode."))
else if (List.length actuals) = 2 then
[(FunctionCall ("input"))] @
((List.tl(List.rev(List.fold_left(fun i j -> i @

j @ [DirectOut ","]) [] (List.map expr (List.rev

actuals)))))) @
[DirectOut "-1"] @
[Parend] else

raise (Failure ("TENLAB Error: function input demands two

inputs."))
Call ("output", actuals) -> if main_type=0 then

raise (Failure ("TENLAB Error: Outputs are only possible

in MEX mode."))
else if (List.length actuals) = 2 then
[(FunctionCall ("output"))] @
((List.tl(List.rev(List.fold_left(fun i j -> i @

j @ [DirectOut ","]) [] (List.map expr (List.rev

actuals)))))) @
[DirectOut "-1"] @
[Parend] else

raise (Failure ("TENLAB Error: function output demands two

inputs."))

Call ("length", actuals) -> if (List.length actuals)

then
[(FunctionCall ("length")) 1 @
((List.tl(List.rev(List.fold_left(fun i j -> i @

j @ [DirectOut ","]) [] (List.map expr (List.rev

actuals)))))) @
[Parend] else

=1

raise (Failure ("TENLAB Error: function length demands a

single input."))
Call ("pop", actuals) -> if (List.length actuals)
[(FunctionCall ("pop")) 1 @
((List.tl(List.rev(List.fold_left(fun i j -> i @

j @ [DirectOut ","]) [l (List.map expr (List.rev

actuals)))))) @
[Parend] else

1 then

raise (Failure ("TENLAB Error: function pop demands a

single input."))

Call ("dequeue", actuals) -> if (List.length actuals) = 1

then
[(FunctionCall ("dequeue"))] @
((List.tl(List.rev(List.fold_left(fun i j -> i @

j @ [DirectOut ","]) [] (List.map expr (List.rev

actuals)))))) @
[Parend] else

raise (Failure ("TENLAB Error: function dequeue demands a

single input."))

Call ("reshape", actuals) -> if (List.length actuals) = 2

then
[(FunctionCall ("reshape"))] @
((List.tl(List.rev(List.fold_left(fun i j -> i @

j @ [DirectOut ",&"]1) [] (List.map expr (List.rev

actuals)))))) @
[Parend] else

raise (Failure ("TENLAB Error: function reshape demands

two inputs."))
Call ("set", actuals) -> if (List.length actuals)
[(FunctionCall ("set")) 1 @

45

3 then

605
606
607
608
609
610
611
612
613

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629

630
631

632
633
634
635

636
637

638

639
640
641
642

((List.tl(List.rev(List.fold_left(fun i j -> i @
j @ [DirectOut ",&"]) []l (List.map expr (List.rev
actuals)))))) @
[Parend] else
raise (Failure ("TENLAB Error: function set demands three
inputs."))
| Call (fname, actuals) ->

[FunctionCall (* (StringMap.find fname env.
function_index) *)
fname] @
(¥ (List.concat (List.map ezpr (List.rev actuals)))

*)
((List.tl(List.rev(List.fold_left(fun i j -> i @
j @ [DirectOut ","]) [] (List.map expr (List.rev
actuals)))))) @

[Parend]
| Noexpr -> []

in let rec stmt = function
Block sl -> List.concat (List.map stmt sl)
| Expr e -> expr e @ [Lineend]
| BuildTensorProd (a,b,c,d,e,f,g,h) ->
[DirectOut (create_tensor_product_code a b c d e £ g h)]
| CreateTensor (s, e) -> [DirectOut (declare_tensor_in_C s e
)]
(* | Return e -> ezpr e @ [ReturnValue num_formals] *)
Return e -> [ReturnValue num_formals] @ expr e @ [Lineend]
Clear e -> [ClearValue e] @ [Lineend]
Clean e -> [CleanValue e] @ [Lineend]
If (p, t, £) -> let t' = stmt t and f' = stmt f in
(¥ expr p @ [Beq(2 + List.length t')] @
t' @ [Bra(l1 + List.length f')] @ f' *)
[Beginf] @ expr p @ [Parend] @ [Curlbegin] @ t' @
[DirectOut "\n}\nelse \n{\n"] @ f' @ [DirectOut "}\n"]
| For (el, e2, b) ->

let b' = stmt b in
(*¥[DirectOut ("TENLAB_Tensor " ~ el ~
";\nTENLAB_Tensor_create(&" ~ el ~ ");\n")] @ *)
[DirectOut (declare_for_loop_in_C el e2)] @
[DirectOut ("TENLAB_assign(&" ~ el =~ "," = e2 ~
".Content [TENLAB_for_" ~ el =~ "-1]1);\n")] @ (b') @ [Curlend]
(*@

[DirectOut ("TENLAB_Tensor_destroy(&" ~ el ~ ");\n")Jx*)
(*[DirectOut (declare_for_loop_in_C el e2)] @ (stmt b) @ [

Curlend] *)
| While (e, b) ->
let b' = stmt b and e' = expr e in let out= match (e') with
[DirectOut s] -> [DirectOut "while ("] @ [DirectOut s] @
[DirectOut (".Content[" ~ s ~ ".cur_content_length-1]>0)
{\n")] @

b' @ [Curlend]
| _ -> raise (Failure
("TENLAB Error: While loops take in a single tensor as
argument."))
in out

in if (fdecl.fname)="main" then

(*
46

658
659
660
661
662
663
664
665
666
667
668
669

~J =~ =1 I
w N = o

o)
D

33
SN

o)

D

676
677
678
679
680
681
682
683
684
685
686

—_

687
688
689
690
691
692
693
694
695

Generation of C Functions Compatible with the C Library
*)
if main_type=0 then
[FunctionCall
(fdecl.fname)] @
[DirectOut
(str_crop_last_char (List.fold_left (fun i j -> i ~ j et
)
"" fdecl.formals))] @[Parend] @ [Curlbegin] @
(List.fold_left (fun i j -> i @
[DirectOut ("TENLAB_Tensor " ~ j =~ ";\n" ~
"TENLAB_Tensor_create(&" ~ j =~ ");\n")]) [l (globals)) @
stmt (Block fdecl.body) @ [Curlend] else
(* Generation of Mexz Code for C *)
[DirectOut
"void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const
mxArray #*prhs[])"]
@ [Curlbegin] @
(List.fold_left (fun i j -> i @
[DirectOut ("TENLAB_Tensor " ~ j = ";\n" ~
"TENLAB_Tensor_create(&" =~ j = ");\n")]) [l (globals)) @
stmt (Block fdecl.body) @ [Curlend]

else
[DirectOut "TENLAB_Tensor "] @
[FunctionCall
(fdecl.fname)] @
[DirectOut
(str_crop_last_char (List.fold_left
(fun i j -> i - "TENLAB_Tensor " =~ j ~ nom)y "t o fdecl.

formals))] @
[Parend] @ [Curlbegin] @
(List.fold_left (fun i j -> i @

[DirectOut ("TENLAB_Tensor " =~ j =~ ";\n" ~
"TENLAB_Tensor_create(&" = j = ");\n")]) [] (fdecl.locals))
Q

stmt (Block fdecl.body) @ [Curlend]

in let env = { function_index = function_indexes;
global_index = global_indexes;
local_index = StringMap.empty 1} in

let entry_function_actual = [] in
(*
Compile the functions
*)
let func_bodies =
entry_function_actual :: List.map (translate env) functions
in

{ num_globals = List.length globals;
(*
Concatenate the compiled functions and replace the function
indexes with their actual names
*)
text = Array.of_list (List.map (function
as s -> s) (List.concat (List.rev func_bodies)))

47

TENLAB Source File 5: testlab.sh

Testlab: The TENLAB Testing Environment for the C Targets
Author: Mehmet Kerem Turkcan
Based on the MICROC code

CUB W

TENLAB="./tenlab"

6 |ulimit -t 30
globallog=testall.log
& |rm -f $globallog

9 lerror=0

10 |globalerror=0

11 |keep=0
12 |Usage () {
13 echo "Usage: testall.sh [options] [.ten files]"
14 echo "-k Keep intermediate files"
15 echo "-h Print this help"
16 exit 1
17 1}
18 |SignalError () {
19 if [$error -eq 0] ; then
20 echo "FAILED"
21 error=1
22 fi
23 echo " $1"
24 |}
25 |Compare () {
26 generatedfiles="$generatedfiles $3"
27 echo diff -b $1 $2 ">" $3 1>&2
28 diff -b "$1m" "g2" > "g3" 2>&1 || {
29 SignalError "$1 differs"
30 echo "FAILED $1 differs from $2" 1>&2
31 }
32 |}
33 Run() {
echo $x* 1>&2
35 eval $x* || {
36 SignalError "$1 failed on $x*"
37 return 1
38 }
39 |}

40 |RunFail () {
11 echo $* 1>&2

42 eval $* && {
43 SignalError "failed: $* did not report an error"
14 return 1
45 }
46 return O
17 1}
48 |Check () {
9 error=0
0 basename="echo $1 | sed 's/.*\\///
s/.ten//"'"

5 =

reffile="echo $1 | sed 's/.ten$//'"
basedir=""echo $1 | sed 's/\/["\/1x$//' /."
echo -n "$basename "

echo 1>&2

echo "###### Testing $basename" 1>&2
generatedfiles=""

Y Ot

A

Ot Ot Ot O O O O U i
w N

-

48

58
59
60
61
62
63
64
65
66
67
68
69
70

[}

~ =3~ =
(S IS TN

82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

}

generatedfiles="$generatedfiles ${basenamel}.c.out" &&

Run "$TENLAB" "-c" "<" $1 ">" ${basename}-c.c &&
Run "gcc " ${basename}-c.c " -o " ${basename}-c.exe &&
Run "./${basenamel}-c" "> ${basenamel}.c.out" &&

Compare ${basename}.c.out ${reffile}.out ${basename}.c.diff
if [$error -eq 0] ; then

echo "Works!"

echo "###### SUCCESS" 1>&2

else

echo "###### Failed Horribly!" 1>&2

globalerror=$error

fi

CheckFail () {

}

error=0
basename="echo $1 | sed 's/.*\\///
s/.ten//"'"
reffile="echo $1 | sed 's/.ten$//'"
basedir=""echo $1 | sed 's/\/["\/1x*x$//'~/."
echo -n "$basename "
echo 1>&2
echo "###### Testing $basename" 1>&2
generatedfiles=""
generatedfiles="$generatedfiles ${basenamel}.err ${basenamel}.
diff" &&
RunFail "$TENLAB" "-c" "<" $1 "2>" "${basenamel}.err" ">>"
$globallog &&
Compare ${basename}.err ${reffile}.err ${basenamel}.diff
if [$error -eq 0 1 ; then
echo "Works!"
echo "###### SUCCESS" 1>&2
else
echo "###### Failed Horribly!" 1>&2
globalerror=$error
fi

while getopts kdpsh c; do

do

case $c in
k) # Keep intermediate files
keep=1
h) # Help
Usage
esac
ne

shift ~expr $O0PTIND - 1°

if

[$# -ge 1 1]

then

el

fi
fo
do

files=$§0@
se
files="tests/fail-*.ten tests/test-*.ten"

r file in $files

case $file in
test —)
Check $file 2>> $globallog

3

49

115
116
117
118
119
120
121
122
123
124

fail -)
CheckFail $file 2>> $globallog

3

*)
echo "unknown file type $file"
globalerror=1
esac
done

exit $globalerror

50

N N O

29

32

2Q
38

TENLAB Source File 6: testc.sh

Testlab: The TENLAB Testing Environment for the C Targets
Author: Mehmet Kerem Turkcan
Based on the MICROC code

TENLAB="./tenlab"
ulimit -t 30
globallog=testall_c.log
rm -f $globallog

error=0
globalerror=0
keep=0
Usage () {
exit 1
}
SignalError () {
if [$error -eq 0] ; then
echo "FAILED"
error=1
fi
echo " $1"
}

Compare () {
generatedfiles="$generatedfiles $3"
echo diff -b $1 $2 ">" $3 1>&2
diff -b "$1" "$2" > "$3" 2>&1 || {

SignalError "$1 differs"
echo "FAILED $1 differs from $2" 1>&2
}

}

Run () {
echo $x* 1>&2
eval $* || {

SignalError "$1 failed on $x*"
return 1
}

}

RunFail () {
echo $x* 1>&2
eval $x* && {

SignalError "failed: $* did not report an error"
return 1
}

return O

}
Check () {
error=0
basename="echo $1 | sed 's/.*\\///

s/.c//'"
reffile="echo $1 | sed 's/.c$//'"
basedir=""echo $1 | sed 's/\/["\/1x$//'"/."
echo -n "$basename..."
echo 1>&2
echo "###### Testing $basename" 1>&2
generatedfiles=""
generatedfiles="$generatedfiles ${basenamel}.c.out" &&
Run "gcc ctests/${basename}.c" " -o " ${basenamel-c.exe
Run "./${basenamel}-c" "> ${basenamel}.c.out" &&

o1

&&

79
80
81
82
83
84

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

Compare ${basename}.c.out ${reffile}.out ${basename}.cc.diff
if [$error -eq 0] ; then

echo "Works!"

echo "###### Failed Horribly!" 1>&2

else

echo "###### FAILED" 1>&2

globalerror=$error

fi
}
CheckFail () {
error=0
basename="echo $1 | sed 's/.*\\///
s/.ten//"'"
reffile="echo $1 | sed 's/.ten$//'"
basedir=""echo $1 | sed 's/\/["\/1x*x$//' /."
echo -n "$basename..."
echo 1>&2
echo "###### Testing $basename" 1>&2
generatedfiles=""
generatedfiles="$generatedfiles ${basenamel}.err ${basenamel.
diff" &&
RunFail "$TENLAB" "-b" "<" $1 "2>" "${basenamel}.err" ">>"
$globallog &&
Compare ${basename}.err ${reffile}.err ${basenamel}.diff
if [$error -eq 0] ; then
echo "Works!"
echo "###### Failed Horribly!" 1>&2
else
echo "###### FAILED" 1>&2
globalerror=$error
fi
}

shift ~expr $O0PTIND - 1°
files="ctests/test-*.c"
for file in $files
do
case $file in
test —)
Check $file 2>> $globallog

P

*)
echo "unknown file type $file"
globalerror=1
esac
done

exit $globalerror

52

TENLAB Source File 7: tenlab_preamble.c

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>

N OOt W N

8 |typedef struct TENLAB_Tensor

9 K

10 int *Shape;

11 double *Content;

12 size_t max_content_length;
13 size_t cur_content_length;

14 size_t shape_length;
15 |} TENLAB_Tensor;

16

17 |void TENLAB_Terminate ()
18 {

19 exit (1);

20 ¥

21

22 |void TENLAB_add_element (TENLAB_Tensor *X, double y)
23 |

24 if (X->cur_content_length == X->max_content_length)

25 {

26 int new_max_content_length = X->max_content_length + X->
Shape [X->shape_length-1];

27 //Different 0S's may have SIZE_T_MAX instead

28 if ((new_max_content_length > X->max_content_length) && (

new_max_content_length < SIZE_MAX / sizeof (double)))
29 {

30 double *new_Content = (doublex*) realloc(X->Content,
new_max_content_length * sizeof (double));

31 if (new_Content != NULL)

32 {

33 X->Content = new_Content;

34 X->max_content_length = new_max_content_length;

35 }

36 else

37 {

38 printf ("\n TENLAB Error: Memory filled during size

reallocation.");

39 TENLAB_Terminate () ;

10 }

41 }

42 else

13 {

44 printf ("\n TENLAB Error: Memory overflow.");

45 TENLAB_Terminate () ;

16 }

47 }

48 X->Content [X->cur_content_length] = (double) y;

49 X->Shape [0] = X->Shape [0]+1;

50 X->cur_content_length++;

51 |}

52

53

53 |void TENLAB_add_length (TENLAB_Tensor *X)

54

55 if (X->cur_content_length == X->max_content_length)

56 {

57 int new_max_content_length = X->max_content_length + X->
Shape [X->shape_length-1];

58 //Different 0S's may have SIZE_T_MAX instead

59 if ((new_max_content_length > X->max_content_length) && (
new_max_content_length < SIZE_MAX / sizeof (double)))

60 {

61 double *new_Content = (double*) realloc(X->Content,
new_max_content_length * sizeof (double));

62 if (new_Content != NULL)

63 {

64 X->Content = new_Content;

65 X->max_content_length = new_max_content_length;

66 }

67 else

68 {

69 printf ("\n TENLAB Error: Memory filled during size

reallocation.");

70 TENLAB_Terminate () ;

71 }

72 }

73 else

74 {

75 printf ("\n TENLAB Error: Memory overflow.");

76 TENLAB_Terminate () ;

77 }

78 }

79 X->Content [X->cur_content_length] = (double) X->
cur_content_length;

80 X->Shape [0] = X->Shape[0]+1;

81 X->cur_content_length++;

82 |}

83

84 |void TENLAB_pop_element (TENLAB_Tensor *X)

85 |{

86 if (X->cur_content_length > 0)

87 {

88 int new_max_content_length = X->max_content_length - 1;

89 //Different 0S's may have SIZE_T_MAX instead

90 if ((new_max_content_length < SIZE_MAX / sizeof (double)))

91 {

92 double *new_Content = (doublex*) realloc(X->Content,
new_max_content_length * sizeof (double));

93 if (new_Content != NULL)

94 {

95 X->Content = new_Content;

96 X->max_content_length = new_max_content_length;

97 }

98 else

99 {

100 printf ("\n TENLAB Error: Memory filled during element

removal.");

101 TENLAB_Terminate () ;

102 }

103 }

104 else

o4

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124
125
126
127
128
129
130

131
132
133
134
135
136
137
138
139
140
141
142
143

144
145
146
147
148
149
150
151
152
153

154

ot ot
Y Ot

=

157
158

{
printf ("\n TENLAB Error: Memory overflow.");
TENLAB_Terminate () ;
}
if (X->Shape [0] > 1)
X->Shape [0] = X->Shape[0]-1;
X->cur_content_length--;

}

void TENLAB_add_shape (TENLAB_Tensor *X, double y)
{
int new_max_shape = X->shape_length + 1;
//Different 0S's may have SIZE_T_MAX instead
if (new_max_shape < SIZE_MAX / sizeof (int))
{
int *new_Shape = (int#*) realloc(X->Shape, new_max_shape *
sizeof (int));
if (new_Shape != NULL)
{
X->Shape = new_Shape;
}
else
{
printf ("\n TENLAB Error: Memory filled during size
reallocation.");
TENLAB_Terminate () ;
}
}
else
{
printf ("\n TENLAB Error: Memory overflow.");
TENLAB_Terminate () ;
}
X->Shape [X->shape_length] = (int) y;
X->shape_length++;
}

void TENLAB_add_element_at_specific_position(TENLAB_Tensor *X,
TENLAB_Tensor *Y, TENLAB_Tensor *Z)
{
if (Y->cur_content_length==X->shape_length)
{
int adding_index=1;
for (int i=0;i<X->shape_length;i++)
adding_index=adding_index * Y->Content[i];
adding_index=(int)adding_index;
if (X->cur_content_length < adding_index-1)
{
int new_max_content_length = adding_index-1;
if ((new_max_content_length > X->max_content_length) && (
new_max_content_length < SIZE_MAX / sizeof (double)))

{
double *new_Content = (doublex*) realloc(X->Content,
new_max_content_length * sizeof (double));
if (new_Content != NULL)
{

95

159
160
161
162
163
164
165
166
167

168
169
170
171
172
173
174
175
176
177

178
179
180
181

182
183
184
185
186

187
188
189
190
191
192
193

194
195

196
197
198
199
200
201
202
203
204
205
206

207
208
209
210

X->Content = new_Content;
X->max_content_length = new_max_content_length;
for (int i=X->cur_content_length;i<=adding_index-1;i++)
X->Content [1]=0;
X->cur_content_length=adding_index-1;
}
else
{
printf ("\n TENLAB Error: Memory filled during size
reallocation.");
TENLAB_Terminate () ;
}
}
else if (new_max_content_length >= SIZE_MAX / sizeof (double))
{
//printf ("\n TENLAB Error: Memory overflow.");
//TENLAB_Terminate () ;

}
}
X->Content [adding_index-1] = Z->Content[Z->cur_content_length
-11;
}
else
{
printf ("\n TENLAB Error: Assignment dimension does not match."
)5
TENLAB_Terminate () ;
}
}

void TENLAB_add_element_at_linear_index (TENLAB_Tensor *X,int
adding_index, double y)

{
if (X->cur_content_length==X->shape_length)
{
if (X->cur_content_length < adding_index-1)
{

int new_max_content_length = adding_index-1;
if ((new_max_content_length > X->max_content_length) && (
new_max_content_length < SIZE_MAX / sizeof (double)))

{
double *new_Content = (doublex*) realloc(X->Content,
new_max_content_length * sizeof (double));
if (new_Content !'= NULL)
{
X->Content = new_Content;
X->max_content_length = new_max_content_length;
for (int i=X->cur_content_length;i<=adding_index-1;i++)
X->Content [i]=0;
X->cur_content_length=adding_index-1;
}
else
{
printf ("\n TENLAB Error: Memory filled during size
reallocation.");
TENLAB_Terminate () ;
}
}

else if (new_max_content_length >= SIZE_MAX / sizeof (double))

o6

211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230
231

232
233
234
235
236
237
238
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

{
//printf ("\n TENLAB Error: Memory overflow.");
//TENLAB_Terminate () ;

}
3
X->Content [adding_index-1] = y;
}
else
{
printf ("\n TENLAB Error: Assignment dimension does not match."
)
TENLAB_Terminate () ;
+
X

void TENLAB_Tensor_create (TENLAB_Tensor *X)
{
X->Shape = NULL;
X->Content = NULL;
X->shape_length = 1;
int *new_Shape = (int*) realloc(X->Shape, (X->shape_length) x*
sizeof (int));
if (new_Shape != NULL)
{
X->Shape = new_Shape;
X->Shape [0] = 1;
}
else
{
printf ("\n TENLAB Error: Memory filled during tensor
initialization.");
TENLAB_Terminate () ;
}
X->cur_content_length
X->max_content_length

o
[ele]

}

void TENLAB_Tensor_destroy (TENLAB_Tensor *X)

{
free(X->Content) ;

free (X->Shape) ;
X->max_content_length = 0;
X->cur_content_length

X->shape_length = 0;

1]
o

}

void TENLAB_Tensor_duplicate (TENLAB_Tensor #*Y,TENLAB_Tensor *X)
{
free(Y->Content) ;
free (Y->Shape);
Y->shape_length = X->shape_length;

Y->cur_content_length = X->cur_content_length;

Y->max_content_length = X->max_content_length;

double *new_Content = (doublex*) malloc(X->max_content_length *
sizeof (double)) ;

if (new_Content != NULL)

{

Y->Content = new_Content;

57

266

267
268
269
270

271
272
273
274
275
276
277
278
279
280
281

282
283
284
285
286
287
288
289
290

291
292
293
294
295
296
297
298
299

300
301
302
303
304
305
306
307
308
309
310
311
312
313

314
315
316
317
318

memcpy (Y->Content ,X->Content ,X->max_content_length * sizeof (
double));

}

else

{

printf ("\n TENLAB Error: Memory filled during tensor
duplication.");

TENLAB_Terminate () ;

}

int *new_Shape = (int*) malloc(X->shape_length * sizeof (int));
if (new_Shape != NULL)

{

Y->Shape = new_Shape;
memcpy (Y->Shape ,X->Shape ,X->shape_length * sizeof (int));
}
else
{
printf ("\n TENLAB Error: Memory filled during tensor
duplication.");
TENLAB_Terminate () ;
}
}

void TENLAB_Tensor_reshape (TENLAB_Tensor *Y,TENLAB_Tensor #*X)
{
free (Y->Shape) ;

Y->shape_length = X->cur_content_length;

int *new_Shape = (int*) malloc(X->cur_content_length * sizeof (
int));

if (new_Shape != NULL)

{

Y->Shape = new_Shape;
for(int i=1;i<=X->cur_content_length;i++)
Y->Shape[i-1]=(int) round(X->Content[i-1]);

}
else
{
printf ("\n TENLAB Error: Memory filled during tensor reshaping
2"
TENLAB_Terminate () ;
}
}
void TENLAB_dequeue_element (TENLAB_Tensor *X)
{
if (X->cur_content_length > 0)
{
X->Content ++;
int new_max_content_length = X->max_content_length - 1;

//Different 0S's may have SIZE_T_MAX instead
if ((new_max_content_length < SIZE_MAX / sizeof (double)))
{
//double *new_Content = (doublex*) realloc(X->Content,
new_maz_content_length * sizeof (double));
//if (new_Content != NULL)

72l

//X->Content = new_Content;
X->max_content_length = new_max_content_length;
//}

o8

319
320
321

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

337
338
339
340
341
342
343
344
345
346
347
348
349

350
351
352
353

354
355
356
357

358
359
360
361
362
363
364
365
366
367
368
369
370
371

//else
/71
//printf ("\n TENLAB Error: Memory filled during element
removal.");
//TENLAB_Terminate ();
//}
}
else
{
printf ("\n TENLAB Error: Memory overflow.");
TENLAB_Terminate () ;
}
if (X->Shape [0] > 1)
X->Shape [0] = X->Shape[0]-1;
X->cur_content_length--;
}
}

void TENLAB_Tensor_nonpointing_duplicate (TENLAB_Tensor *Y,
TENLAB_Tensor X)
{
//free(Y->Content) ;
//free(Y->Shape);
TENLAB_Tensor temp;
TENLAB_Tensor_create (&temp);
//TENLAB_Tensor_duplicate (&temp ,&X) ;
//printf ("This worked") ;
//TENLAB_Tensor_destroy (Y);
//TENLAB_Tensor_create(Y);
Y->shape_length = X.shape_length;

Y->cur_content_length = X.cur_content_length;
Y->max_content_length = X.max_content_length;
double *new_Content = (double*) malloc(X.max_content_length *
sizeof (double));
if (new_Content != NULL)
{
Y->Content = new_Content;
memcpy (Y->Content ,X.Content ,X.max_content_length * sizeof(
double));
}
else
{

printf ("\n TENLAB Error: Memory filled during tensor
duplication.");
TENLAB_Terminate () ;

}

int *new_Shape = (int*) malloc(X.shape_length * sizeof (int));
if (new_Shape != NULL)

{

Y->Shape = new_Shape;

memcpy (Y->Shape ,X.Shape ,X.shape_length * sizeof (int));
}

else
{

printf ("\n TENLAB Error: Memory filled during tensor

duplication.");

TENLAB_Terminate () ;
}

TENLAB_Tensor_destroy (&temp) ;

99

375
376
377
378
379
380

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

101
402
403

104
405
406
407
408
409

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

}

#define TENLAB_assign(a, b) _Generic(b, int: TENLAB_add_element,
double: TENLAB_add_element, TENLAB_Tensor
TENLAB_Tensor_nonpointing_duplicate) (a, b)

void TENLAB_Tensor_check_size (TENLAB_Tensor *X,TENLAB_Tensor *Y)
{
if (X->Shape[0]!=Y->Shape [0])
{
printf ("\n TENLAB Error: Total number of dimensions are
different.");
TENLAB_Terminate () ;
}
else
{
for (int i=1;i<=X->shape_length;i++)
{
if (X->Shapel[i-1]!=X->Shapel[i-1])
{
printf ("\n TENLAB Error: Dimensions don't match.");
TENLAB_Terminate () ;
}
}
}
¥

void TENLAB_Tensor_force_scalar (TENLAB_Tensor *X)
{
if (X->cur_content_length>1)
{
printf ("\n TENLAB Error: A scalar was sought.");
TENLAB_Terminate () ;
}
}

void TENLAB_Tensor_while_is_not_scalar (TENLAB_Tensor *X)
{
if (X->cur_content_length>1)
{
printf ("\n TENLAB Warning: A while loop only considers the
first element of a tensor.");
}
¥

void TENLAB_Tensor_print (TENLAB_Tensor X)
{
if (X.cur_content_length>=1)
{
for(int i = 1; i <= X.cur_content_length; i++)
{
printf ("%f\n",X.Content [i-1]);
}
}
}

void TENLAB_Tensor_shape_print (TENLAB_Tensor X)

{
for(int i = 1; i <= X.shape_length; i++)

60

427 {

428 printf ("/f\n",(double) X.Shapel[i-1]);
429 }

430 |}
431
432 |void TENLAB_Tensor_round_all (TENLAB_Tensor X)
433
434 if (X.cur_content_length>=1)

435 | {

436 for(int i = 1; i <= X.cur_content_length; i++)
437 {

438 X.Content[i-1]=round(X.Content[i-1]) ;

439 }

440 T

141 |}
442
443 |void TENLAB_Tensor_round (TENLAB_Tensor X)
445 if (X.cur_content_length>=1)

446 {

447 X.Content [X.cur_content_length-1]=round(X.Content [X.
cur_content_length-1]1);

448 }

149 |}

61

9 Project Log

1 |commit ec90b0555cf11837c76cabdc66daaf7bcecb9ffe
2 |Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
3 |Date: Wed May 11 19:11:11 2016 -0400

Pushing the (probably) last set of changes.

7 |commit 32b6835f68f9a508b07e7799c1dcb0fd5b13d7db
8 |Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
9 |Date: Wed May 11 13:13:16 2016 -0400

11 Added the demo.

13 Jcommit 1542f10b947248edd35a503450f4ab51088462a0
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
15 |Date: Wed May 11 11:12:43 2016 -0400

17 I believe everything is essentially done.
18
19 |commit 0c2545338d869fb8a88b29893c6e5d5646d44£83

20 |Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>

21 |Date: Wed May 11 09:04:41 2016 -0400

29

23 Added some parts of the final presentation.

24

25 |commit f5cab827baled46b1a99242e894466e8cc870bab

26 |Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>

27 |Date: Wed May 11 00:29:01 2016 -0400

28

29 10 new test cases. Better error handling. Done with nearly
everything.

30

31 |commit 5a925b5901e2c69ea8a065c23eal1d9842d9eff35

32 |Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>

33 |Date: Tue May 10 21:43:10 2016 -0400

34

35

Satisfied with this first draft. Now let's see what we can
do in the time we have!

2

b

37 |commit €9e040d6c87ae7d70b6208f0165b0db495586b0a

38 |Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
2]
D)

39 |Date: Tue May 10 20:17:59 2016 -0400

40

11 The final stretch! Need to reimplement the tensor product
into the LRM.

42

13 |commit 72f8d01eca97d34d070292ccacdb9daa20c88c16

14 |Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>

45 |Date: Tue May 10 18:35:17 2016 -0400

16

17 Close to being done. Still not satisfied with a number of
sections.

18

19 |commit 796ff1fb1be020c57d94d40c8402445628b95727
50 |Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Tue May 10 16:59:53 2016 -0400

62

~N ~J 1
Y O B W N

102
103
104
105
106

Slowly getting there in regards to the report. Tutorial,
testing and the tensor product are all that's left.

commit b28b838b4cb9d635bc038569f9fb76£f414f2c469
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Tue May 10 15:50:22 2016 -0400

Still heavily working on the final report. The LRM still
needs a lot of updates.

commit £2a751b746d2380018d6c17267b4abb5bad737048
Author: Mehmet Kerem Turkcan <mkt2126Qcolumbia.edu>
Date: Tue May 10 13:09:28 2016 -0400

Added a nice architecture diagram.

commit 38ce6fedd1dO0cealdbed37443923e2d574261e35
Author: Mehmet Kerem Turkcan <mkt2126Qcolumbia.edu>
Date: Tue May 10 12:14:05 2016 -0400

Continuing to work on the final report. Architectural Design
section is almost complete.

commit 8339a4463218e¢911d208fa6d20015cbdf060954e
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Tue May 10 10:31:23 2016 -0400

Still working on the final report.

commit 2909f37bb70dal1f8569d79b17b80dad7d4el13614
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Tue May 10 08:45:42 2016 -0400

Continuing to work on the final report.

commit cfb77cef30c88174ff7b68a78ae2688bb%ad47eb
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Tue May 10 07:49:20 2016 -0400

Tensor product done. Now perhaps we should change the
representation to the MATLAB format from the C format.

commit a04a9f0add4c8719b025£f83c4cf563fef3f9fed7
Author: Mehmet Kerem Turkcan <mkt2126Qcolumbia.edu>
Date: Tue May 10 00:33:53 2016 -0400

Tensor product integrated. Does not appear to work.

commit 282e8c2d5b5e787031cc0aef290e053a737779al
Author: Mehmet Kerem Turkcan <mkt2126Qcolumbia.edu>
Date: Mon May 9 21:47:00 2016 -0400

More additions to the final report. Continuing work on the
tensor product.

commit 57614ed10757a099b20e7724234e924c01a0074e

Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Mon May 9 20:08:09 2016 -0400

63

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

35
136
137
138
139
140
141
142
143
144
145
146
147
148
149

— o e e
Ut Ov Ut Ot Ut Ot
Ot W N =

156
157
158
159
160
161
162
163

Perhaps the problem is now fixed?

commit 97b3c39fdb17afa815462bb65f0c300a1749052f
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Mon May 9 19:13:49 2016 -0400

Added some new test cases. There is a failure.

commit 5¢c607320eealcf25e826de398ba249ca87c009f0
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Mon May 9 18:35:34 2016 -0400

Some updates to the final report.

commit 23e697df8a506049dc8c431788844c6a58052880
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Mon May 9 16:07:53 2016 -0400

Mex is done. Need more functions.

commit b44f257bddd861cbecf7c3b091fb5052a0638915
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Mon May 9 14:30:42 2016 -0400

Mex interface is almost done.

commit ec57b4c8153f440120dfad40b62f299bleal866a4dl
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Mon May 9 12:10:12 2016 -0400

Library now compatible with MATLAB. No outputs yet.

commit bc73525f6688e041945969c42055d10ff6dblall
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Mon May 9 11:41:54 2016 -0400

Adding CPP control files.

commit db1df6a1d7532671d6180dd138af1305acddbel8
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Mon May 9 02:25:19 2016 -0400

Improving the final report. Adding empty husks for mex
integration.

commit d20a3ab4f75c6913eab512c759cd3df504d318623
Author: Mehmet Kerem Turkcan <mkt2126Qcolumbia.edu>
Date: Mon May 9 01:46:52 2016 -0400

More updates to the project report; beginning to integrate
the LRM. Still need to work on some test cases.

commit 857204636cbf4bea9f805b70cl1a0a3cf172b95e7
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Mon May 9 00:12:49 2016 -0400

Updates to project report.

commit a6ad47ab63d221d21ae8142a6c945f9e00d7elaca

64

164
165
166
167
168
169
170
171
172
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Sun May 8 20:41:28 2016 -0400

Style improvements.
commit 7b856908c3389a8f7b23a60520d3efcadb18adb3

Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Sun May 8 17:57:56 2016 -0400

Still working on tests. Also working on the final report,

but not yet ready to show a draft.

commit 024e72d69bcab81bab9d7bfd509bce9a759ffe9f
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Sun May 8 14:37:49 2016 -0400

Even more C tests.

commit 6190bbd797d0ef30f1a76eb217da72ed06403957
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Sun May 8 13:50:03 2016 -0400

Continuing to add C test cases.
commit e2548bbccfb68a274cac8ac4dfd2a9888db474ed

Author: Mehmet Kerem Turkcan <mkt2126Qcolumbia.edu>
Date: Sun May 8 13:21:15 2016 -0400

New test cases. Need to add more C tests. Then focus on

adding more content.
commit dee3945c24cd0d3673f5504f2e2b704071da7dde
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Sun May 8 11:47:35 2016 -0400

More tests.

commit cbbdcd3d1287157ed40a2ffde666e7ab56444a653
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Sun May 8 10:33:01 2016 -0400

Minor alterations to the preamble.
commit 59a529c166c56d2c92e6a7c076e3b985d260c407
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Sun May 8 10:24:27 2016 -0400

Completed adding a basic testing script for the
commit fe733712d9fbd60c8f0182a39ffe399bd7eab4e?
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Sun May 8 09:38:48 2016 -0400

Beginning to build the C testing environment.
commit 8e284d0b2abdd843bb8efec8caad72578526236Db

Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Sat May 7 20:51:22 2016 -0400

65

C library.

[\]
\V)

w N

Yy Ot

DN N NN
o~

NN NN NN

[\S]
-~

N DO

o Ot Ot
Y U W N

SN

-~

Beginning to update the white paper for the final report.
Just random ideas at the moment.

commit e429fc2b6eabl1464501e26d8aa8cdal4aacb786d
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Sat May 7 19:13:31 2016 -0400

Another test dealt with. There are some memory problems that
are still cropping up; need to devise tests to deal
with them.

commit 2eb2dce46fe7bb38e64d6775198c717c2ad37bf2
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Fri May 6 22:49:15 2016 -0400

A lot of the other test cases are running again. New test
case for For.

commit 5d6cffc671b925c54a2229p6d3659d73612b62ed
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Fri May 6 22:39:08 2016 -0400

Another test case integrated. For loops are quite cool now.

commit d947£f5227e5407ebd4ccb5a868242a0297a506132
Author: Mehmet Kerem Turkcan <mkt2126Qcolumbia.edu>
Date: Fri May 6 21:27:56 2016 -0400

One more test case down. Some parser behaviours have been
fixed.

commit d40aa45d356459812b1d098622285felbc3b8f67
Author: Mehmet Kerem Turkcan <mkt2126Qcolumbia.edu>
Date: Fri May 6 18:34:24 2016 -0400

Removed a number of discrepancies and began the integrate
the scalar/tensor operations for the users' convenience.

commit dce623cb6645708451a8ee6e6c8fd23b7dfacl72
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Thu May 5 22:36:13 2016 -0400

More fundamental functions that access the Tensor struct
automatically. Beginning to reintegrate the tests one by
one.

commit 356bb5f1869c9cdd793286cb38d0186f1f86a0bb
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Thu May 5 16:11:57 2016 -0400

Added a better version of the C backend libraries for the
language as well as some test cases for prototyping.

commit 2337a7e45769bf3b36979e22e39fac2bfcd06613
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Thu May 5 12:01:41 2016 -0400

Added the first elements of the preamble necessary.
Integrated with the language. Cleaned legacy code.

66

NN NN NN
~N N~ 3

QU W N =

O 00 ~J D

O ~ ~ =1 I

X

DN NDNDNDNDNDDNDNDN
0 OO0 00 00 QO (
N =

oC
Ut s W

286

1

[\
0

288
289
290
291
292

293

commit 65dfbf05dfc75b9c24c2al1a23ee4dc2208077£f£f3
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Thu May 5 00:03:27 2016 -0400

Adding the prototypes for the execution-time error checking
modules. The idea is to decouple the shape information
from the content for certain operations in order to
allow for more freedom to the user.

commit elc64eabfcb693392a714d25470dc3ab875c7611
Author: Mehmet Kerem Turkcan <mkt2126Qcolumbia.edu>
Date: Wed Apr 27 13:26:26 2016 -0400

Spring cleaning done. Mex interface added, but without I/O.

commit aa08782f8f81078b4e12d1bdb08f7f1c773c2abc
Author: Mehmet Kerem Turkcan <mkt2126Qcolumbia.edu>
Date: Tue Apr 26 23:46:23 2016 -0400

Almost done with the cleaning. Better memory handling.
Broadcasting between scalars and tensors still has some
glaring problems. Many problems cannot be handled by the

compiler, but we can solve problems using indirection
or through the introduction of a "scalar" type.

commit 85bbd19f6ba9e6cad234a6e3d9c9f9f0f6del3ch
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Tue Apr 26 15:14:37 2016 -0400

More cleaning. Removed the now-useless execute function
completely. Reduced the compilation warnings; the ones
that still exist are for code that will be added later.

commit 8aal11198e67ead4723bf9bb79c5c567b25c1c2d7
Author: Mehmet Kerem Turkcan <mkt2126Qcolumbia.edu>
Date: Tue Apr 26 12:03:59 2016 -0400

Spring cleaning continues. Slowly removing dependencies on
the DirectOut function.

commit ce0fe3257a1284f3d2e4ff0562feb0el10d0db4ef
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Tue Apr 26 10:51:42 2016 -0400

Beginning to do some spring cleaning. Also implementing
blocks for garbage collection. Next step: replace the
compound literals.

commit 73be3a6704018ce60c92dfe0cc8190d94a4458fc
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Sun Apr 24 23:38:54 2016 -0400

Various improvements; the language is working apart from
some scalar/tensor casts.

commit 316e9edebla9173bl7aeecabablelf9el16efb6a3
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Sun Apr 24 22:12:10 2016 -0400

67

- O Ot i

N DN DN NN N
0]

W W W Ww w w

344
345
346
347
348
49

Y T W N

-~

W W W WwwWwWwwwww
ot Ov Ot Ot Ot Ot Ot Ot (1

co

Fixed numerous C crashes due to dynamic memory allocation.
Size inference is still a huge problem. Have to consider
I/0 next to focus on solving the remaining problems.

commit 093795a65d8d877b9a1d59415b53343442283d57
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Sat Apr 23 13:17:40 2016 -0400

Everything but size inference is operational. Need to
implement checks on sizes and garbage collection.

commit 669097b2994dbf7fel123c699fcce022cb3a295fe
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Sat Apr 23 00:40:07 2016 -0400

Vast improvements; the optimized code generator is nearly
complete.

commit 8909fef876a148dd01bf9ec86£f643a55565027cc
Author: Mehmet Kerem Turkcan <mkt2126Qcolumbia.edu>
Date: Fri Apr 22 21:36:17 2016 -0400

Creating a dev build to keep track of all the various
changes, even though the build is non-functioning.
Started building the optimized code generator; will be
done soon.

Next Steps: Implement the tensor product into this. Get the
.mex interface done. Then consider other possible
interfaces.

commit 8fe2ceb4fd36eaalcfdad60880e3£f0d47125bb76
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Wed Apr 13 00:11:11 2016 -0400

Major strides in tensor-tensor operations, multi-argument
functions are now operational, fail cases are in and
working for the test system, minor bugs in loop
structures fixed. Tensor-integer operations are not yet
working. Tensor-tensor operations rely on linear
indexing (i..e not tracked by compiler). Tensor-tensor
operations are not compiling. Tensor size checks for the

tests are not in.

commit 39e33a06a109620731d87d0d4297706b838c3418
Author: Mehmet Kerem Turkcan <mkt2126Qcolumbia.edu>
Date: Wed Apr 6 00:29:47 2016 -0400

Replaced the tests with the new ones.

commit ad7aa0faddeb59d76b4d34f0cc9a9c72bb8b77a6b
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Wed Apr 6 00:23:41 2016 -0400

no message

commit db55be8ale04251ac47605b39310872034888fdd2
Author: Mehmet Kerem Turkcan <mkt2126Qcolumbia.edu>

68

104
105
106
107
108

Date: Wed Apr 6 00:00:03 2016 -0400

Improved Hello World files. Variable assignment is not
working. Probably need to begin to write a C library
backend for some nonrecursive operations.

commit clcebe799377638514c82a5456059e024d314603
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Tue Apr 5 15:48:47 2016 -0400

Hello World and variants fully compilable. Working on
accessing tensor elements next.

commit 4cc19843d55bea8b2f0ca726851c0cd48c70£f213
Author: Mehmet Kerem Turkcan <mkt2126Qcolumbia.edu>
Date: Mon Apr 4 23:53:25 2016 -0400

Tensors now work! Only need to write the code to extract
their dimensions as well. We need the function for the
tensor product for the standard library, written in C.

commit 499c50d4f5bef937db9280f010f68fd25a05ela’7
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Mon Apr 4 19:10:28 2016 -0400

Compilation works! Also added templates for tensor
assignments.

commit 492f16e2cdee650a9abe9639db0a20fdadfa94c9
Author: Mehmet Kerem Turkcan <mkt2126Qcolumbia.edu>
Date: Mon Apr 4 16:28:05 2016 -0400

Only source.

commit 0c8fb4fbb08fe327aaf979c6fdd7c437a14f48ee
Author: Mehmet Kerem Turkcan <mkt2126Qcolumbia.edu>
Date: Wed Mar 30 23:31:24 2016 -0400

Basic variables are working, compiler checks are not yet
broken. Now need to implement loops.

commit 7b363efefbed50d6b1396a22f61f69c39181ab09
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Wed Mar 30 21:03:09 2016 -0400

Further improvements.

commit bbl32acabf40bdc886cel2e5bd6ecf8647d76e0f
Author: Mehmet Kerem Turkcan <mkt2126@columbia.edu>
Date: Wed Mar 30 18:16:48 2016 -0400

Beginnings of the compiler. Use "make" on the directory,
then "bash testall.sh" for tests. Only look at the .b
outputs for testall.sh. To do: C code generation.

commit 2eb44320cc232aeb6e6502a26df46c04b161abc3

Author: ycemsubakan <csubakan@gmail.com>
Date: Mon Mar 7 20:12:51 2016 -0500

69

109
410
111
112
413
114
115
416
117
118
419
120
121

146
147
448
149
150
451
152
153
454
155
156
157
158
159
160
161
162
163

added star between A and B

commit 239c7b34d2b7a0169e727af1273dfee3c1£36ccO
Author: ycemsubakan <csubakan@gmail.com>
Date: Mon Mar 7 20:11:53 2016 -0500

added star between A and B

commit 312a568053fcce647e98d63077edbc8cl1e0ddb47
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Mon Mar 7 19:39:26 2016 -0500

New manual.

commit b276a26471175212f7baf17cc87b670d467bc067
Author: ycemsubakan <csubakan@gmail.com>
Date: Mon Mar 7 13:57:58 2016 -0500

added an example C compilation for TP

commit 470e8789d62cd948d1e1d8d505dadb86d0c4468d
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Tue Mar 1 18:29:35 2016 -0500

Some further improvements to both the language manual and
the parser/scanner. Possible errors due to the way IF is
coded.

commit 71e16787aaf7f06a83d925ad27235a13344ab5e4b
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Tue Mar 1 16:04:09 2016 -0500

First drafts for scanner and parser.

commit eclb53aa9cB8alle7e2f5fa90321e75113a45d7420
Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Tue Feb 23 23:49:59 2016 -0500

More traditional sections for the reference manual, may
become important. Ignore first page; extra details that
are possibly also useful for the meetings.

commit 9a03e517e20c00c9f76d4ab10c88ab573536felff
Author: ycemsubakan <csubakan@gmail.com>
Date: Tue Feb 23 14:02:28 2016 -0500

adding_lang_ref_folder
commit 2e612c6d247814d7b9628af2f632403272d4a7£f0

Author: ycemsubakan <csubakan@gmail.com>
Date: Tue Feb 23 13:56:44 2016 -0500

adding_language_ref_folder
commit 296273ab02cc76121a418e3ca36fc9490b64c3be
Author: Mehmet Kerem Turkcan <mkt2126Qcolumbia.edu>

Date: Tue Feb 9 20:20:36 2016 -0500

Lots of minor edits; take an another look before submission.

70

164
465
166

467
168
169

470
171
{72

473
174
175

476
177
178

479
180
181

commit 40f4514ccad0e453c0c5618a4448f96dbf720eef

Author: Cem Subakan <cemsubakan@dyn-160-39-172-138.dyn.columbia.
edu>

Date: Wed Feb 10 00:18:54 2016 -0600
I think this is the final version
commit 502b44201193691e4e2d7095f5525d6194d6cc64

Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Tue Feb 9 01:04:58 2016 -0500

Additions from Cem and some improvements + syntax from me.
commit dabe02777cb5247da479a62a7967e7a7cfa876fdf

Author: Mehmet Kerem Turkcan <mkt2126Q@columbia.edu>
Date: Wed Feb 3 19:32:01 2016 -0500

Template?

71

References

[1] M. U. Guide, “The mathworks,” Inc., Natick, MA, vol. 5, p. 333, 1998.

[2] R. Ihaka and R. Gentleman, “R: a language for data analysis and graphics,”
Journal of computational and graphical statistics, vol. 5, no. 3, pp. 299-314,
1996.

[3] S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array:
a structure for efficient numerical computation,” Computing in Science &
Engineering, vol. 13, no. 2, pp. 22-30, 2011.

[4] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron,
N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new features and
speed improvements,” arXiv preprint arXiv:1211.5590, 2012.

[5] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale machine
learning on heterogeneous systems, 2015,” Software available from tensor-

flow.org.

[6] I. Markovsky, O. Debals, and L. De Lathauwer, “Sum-of-exponentials mod-
eling and common dynamics estimation using tensorlab,” in Latent Variable
Analysis and Signal Separation, 2015, pp. 1-8.

[7] M. Grant, S. Boyd, and Y. Ye, “Cvx: Matlab software for disciplined convex
programming,” 2008.

72

